Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^2\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-2y+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)\)
\(=\left(x-z\right)\left(x-y\right)\left(-3y+3z\right)\)
\(=-3\left(x-y\right)\left(x-z\right)\left(y-z\right)\)
bài a) bn trên đã dẫn link cho bn r
bài b)
Đặt x-y=a;y-z=b;z-x=c
\(=>a+b+c=x-y+y-z+z-x=0\)
\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=a^3+b^3+c^3\)
Theo câu a)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) (do a+b+c=0)
\(=>a^3+b^3+c^3=3abc=>\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
a) Ta có :
\(a^3+b^3+c^3-3abc\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
P/s tham khảo nha
hok tốt
\(\left(x+y+z\right)^3-x^3-y^3-z^3.\)
\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)-x^3-y^3-z^3\)
\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
~ Chúc bạn học tốt~
Đặt \(\left\{{}\begin{matrix}a=x+y\\b=y+z\\c=x+z\end{matrix}\right.\Leftrightarrow x+y+z=\dfrac{a+b+c}{2}\)
\(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\\ =8\left(\dfrac{a+b+c}{2}\right)^3-a^3-b^3-c^3\\ =\left(a+b+c\right)^3-a^3-b^3-c^3\\ =\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)-\left(a+b\right)^3+3ab\left(a+b\right)-c^3\\ =3\left(a+b\right)\left(ac+bc+c^2+ab\right)\\ =3\left(a+b\right)\left(b+c\right)\left(a+c\right)\\ =3\left(x+y+y+z\right)\left(y+z+z+x\right)\left(z+x+x+y\right)\\ =3\left(x+2y+z\right)\left(x+y+2z\right)\left(2x+y+z\right)\)
( x + y + z )3 - x3 - y3 - z3
= [ ( x + y + z )3 - x3 ] - ( y3 + z3 )
= ( x + y + z - x )[ ( x + y + z )2 + ( x + y + z )x + x2 ] - ( y + z )( y2 - yz + z2 )
= ( y + z )( 3x2 + y2 + z2 + 2yz + 3zx + 3xy ) - ( y + z )( y2 - yz + z2 )
= ( y + z )( 3x2 + y2 + z2 + 2yz + 3zx + 3xy - y2 + yz - z2 )
= ( y + z )( 3x2 + 3yz + 3zx + 3xy )
= 3( y + z )( x2 + yz + zx + xy )
= 3( y + z )[ ( x2 + zx ) + ( xy + yz ) ]
= 3( y + z )[ x( x + z ) + y( x + z ) ]
= 3( y + z )( x + z )( x + y )
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y+z\right)^3-x^3\right]-\left(y^3+z^3\right)\)
\(=\left(x+y+z-x\right).\left[\left(x+y+z\right)^2+\left(x+y+z\right).x+x^2\right]-\left(y+z\right)\left(y^2-yz+z^2\right)\)
\(=\left(y+z\right).\left(x^2+y^2+z^2+2xy+2yz+2xz+x^2+yx+zx+x^2\right)-\left(y+z\right)\left(y^2-yz+z^2\right)\)
\(=\left(y+z\right).\left[x^2+y^2+z^2+2xy+2yz+2xz+x^2+yx+zx+x^2-\left(y^2-yz+z^2\right)\right]\)
\(=\left(y+z\right).\left(x^2+y^2+z^2+2xy+2yz+2xz+x^2+yx+zx+x^2-y^2+yz-z^2\right)\)
\(=\left(y+z\right).\left(3x^2+3xy+3yz+3xz\right)\)
\(=\left(y+z\right).\left[\left(3x^2+3xy\right)+\left(3yz+3xz\right)\right]\)
\(=\left(y+z\right).\left[3x.\left(x+y\right)+3z.\left(y+x\right)\right]\)
\(=\left(y+z\right).\left(x+y\right).\left(3x+3z\right)\)
\(=3.\left(y+z\right).\left(x+y\right).\left(x+z\right)\)