K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 11 2017

Câu 47:

Ta có \(\log_3\frac{1-xy}{x+2y}=3xy+x+2y-4\)

\(\Leftrightarrow \log_3(1-xy)-\log_3(x+2y)=3(xy-1)-1+(x+2y)\)

\(\Leftrightarrow \log_3(3-3xy)+(3-3xy)=\log_3(x+2y)+(x+2y)\)

Xét hàm \(f(x)=\log_3x+x\Rightarrow f'(x)=\frac{1}{x\ln 3}+1>0\) với \(x>0\)

Do đó , hàm là hàm đồng biến trên TXĐ

\(\Rightarrow f(3-3xy)=f(x+2y)\Leftrightarrow 3-3xy=x+2y\)

\(\Leftrightarrow y=\frac{3-x}{3x+2}\). Vì \(x,y>0\Rightarrow \frac{3-x}{3x+2}>0\Rightarrow 0< x< 3\)

Ta có \(P=x+\frac{3-x}{3x+2}\)

\(P'=\frac{9x^2+12x-7}{(3x+2)^2}=0\Leftrightarrow x=\frac{-2+\sqrt{11}}{3}\) (chọn) hoặc \(x=\frac{-2-\sqrt{11}}{3}\) (loại vì $x>0$)

Lập bảng biến thiên ta suy ra \(P_{\min}=P(\frac{-2+\sqrt{11}}{3})=\frac{-3+2\sqrt{11}}{3}\)

Đáp án D

AH
Akai Haruma
Giáo viên
6 tháng 11 2017

Bài 48:

PT hoành độ giao điểm:

\(x^3-3x^2+x+2-(mx-m+1)=0\)

\(\Leftrightarrow (x-1)(x^2-2x-1-m)=0\)

Để hai đths cắt nhau tại ba điểm phân biệt thì pt trên phải có ba nghiệm phân biệt, tức là \(x^2-2x-(m+1)=0\) có hai nghiệm phân biệt khác 1

\(\Rightarrow \left\{\begin{matrix} 1-2-(m+1)\neq 0\\ \Delta'=1+(m+1)>0\end{matrix}\right.\Rightarrow m> -2\)

Gọi \(x_1,x_2\) là hai nghiệm của pt trên thì \(x_1,x_2=\frac{-b'\pm \sqrt{\Delta'}}{a}=1\pm \sqrt{m+2}\)

Do đề bài không yêu cầu thứ tự các điểm, nên ta đặt ba giao điểm của 2 đths là:

\(A(1;1)\)

\(B(x_1; mx_1-m+1)\)

\(C(x_2;mx_2-m+1)\)

(miễn sao thỏa mãn tồn tại 2 đoạn thẳng tạo bởi 2 trong 3 điểm trên có độ dài bằng nhau)

Ta có:

\(AB=\sqrt{(x_1-1)^2+(mx_1-m)^2}=\sqrt{(x_1-1)^2(m^2+1)}=\sqrt{(m+2)(m^2+1)}\)

\(AC=\sqrt{(x_2-1)^2+(mx_2-m)^2}=\sqrt{(x_2-1)^2(m^2+1)}=\sqrt{(m+2)(m^2+1)}\)

\(BC=.....\)

Nhìn trên thì dễ thấy \(AB=AC\) luôn bằng nhau với mọi \(m>-2\), tức là thỏa mãn đkđb

Vậy \(m>-2 \) hay \(m\in (-2;+\infty)\)

Đáp án D

27 tháng 10 2021

vao olm thì biê liền OK

19 tháng 11 2021

xin vào ngành nhà giáo để dc làm thầy

19 tháng 11 2021

Học trường Đại Học Sư Phạm Hà Nội

7 tháng 5 2022

😾

24 tháng 12 2016

\(y'=\left(2m+1\right)\cos x+3-m\)

Hàm số đã cho đồng biến trên R \(\Leftrightarrow y'\ge0,\forall x\in R\)

\(\Leftrightarrow\left(2m+1\right)\cos x\le m-3\) (1)

*TH: \(2m+1< 0\Leftrightarrow m< \frac{-1}{2}\), ta có

\(\left(1\right)\Leftrightarrow\cos x\ge\frac{m-3}{2m+1}\) (không thoả với mọi x)

*TH: \(2m+1>0\Leftrightarrow m>\frac{-1}{2}\), ta có

\(\left(1\right)\Leftrightarrow\cos x\le\frac{m-3}{2m+1}\) (2)

(2) đúng với mọi x khi và chỉ khi \(\left|\frac{m-3}{2m+1}\right|>1\Leftrightarrow\left[\begin{array}{nghiempt}m< -4\\m>\frac{2}{3}\end{array}\right.\)

kết hợp \(m>\frac{-1}{2}\) ta có m > 3/2 là giá trị cần tìm

 

 

 

25 tháng 12 2016

sai rùi bạn à. đáp án là A cơ

13 tháng 5 2022

`2x-2/3=1/2`

`2x=1/2+2/3`

`2x=7/6`

`x=7/6:2=7/12`

13 tháng 5 2022

\(2x-\dfrac{2}{3}=\dfrac{1}{2}\Leftrightarrow2x=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\Leftrightarrow x=\dfrac{7}{6}:2=\dfrac{7}{12}\)