K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2020

\(y=\frac{\sqrt{2017\left(x-2015\right)}}{\sqrt{2017}\left(x+2\right)}+\frac{\sqrt{2016\left(x-2016\right)}}{\sqrt{2016}x}\le\frac{1}{2\sqrt{2017}}+\frac{1}{2\sqrt{2016}}\)

"=" \(\Leftrightarrow\)\(x=4032\)

10 tháng 4 2021

Ấp dụng bất đẳng thức Bu-nhi -a- cốp-xki :

\(P^2 = (2x + 3y)^2 \leq (2^2+3^2)(x^2+y^2)=13a^2=117 \rightarrow a^2 = 9 \rightarrow a= 3 hoặc -3\)

NV
6 tháng 7 2020

\(A=\frac{3}{4}.4.x^2\left(8-x^2\right)\le\frac{3}{4}\left(x^2+8-x^2\right)^2=48\)

\(A_{max}=48\) khi \(x^2=8-x^2\Rightarrow x=\pm2\)

\(B=\frac{1}{2}\left(2x-1\right)\left(6-2x\right)\le\frac{1}{8}\left(2x-1+6-2x\right)^2=\frac{25}{8}\)

\(B_{max}=\frac{25}{8}\) khi \(2x-1=6-2x\Rightarrow x=\frac{7}{4}\)

\(C=\frac{1}{\sqrt{3}}.\sqrt{3}x\left(3-\sqrt{3}x\right)\le\frac{1}{4\sqrt{3}}\left(\sqrt{3}x+3-\sqrt{3}x\right)^2=\frac{3\sqrt{3}}{4}\)

\(C_{max}=\frac{3\sqrt{3}}{4}\) khi \(\sqrt{3}x=3-\sqrt{3}x=\frac{\sqrt{3}}{2}\)

\(D=\frac{1}{20}.20x\left(32-20x\right)\le\frac{1}{80}\left(20x+32-20x\right)^2=\frac{64}{5}\)

\(D_{max}=\frac{64}{5}\) khi \(20x=32-20x\Rightarrow x=\frac{4}{5}\)

\(E=\frac{4}{5}\left(5x-5\right)\left(8-5x\right)\le\frac{1}{5}\left(5x-5+8-5x\right)=\frac{9}{5}\)

\(E_{max}=\frac{9}{5}\) khi \(5x-5=8-5x\Leftrightarrow x=\frac{13}{10}\)

NV
2 tháng 8 2021

\(A=4\sqrt{2}sinx+1-2sin^2x+2=-2sin^2x+4\sqrt{2}sinx+3\)

Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)

\(A=f\left(t\right)=-2t^2+4\sqrt{2}t+3\)

Xét hàm \(f\left(t\right)\) trên \(\left[-1;1\right]\)

\(-\dfrac{b}{2a}=-\sqrt{2}\notin\left[-1;1\right]\)

\(f\left(-1\right)=1-4\sqrt{2}\) ; \(f\left(1\right)=1+4\sqrt{2}\)

\(\Rightarrow A_{max}=f\left(1\right)=1+4\sqrt{2}\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=4\\c=2\end{matrix}\right.\)

Ủa đề bài sai, \(c>a\) chứ sao \(c\le a\) được?

//Em xem lại câu hỏi hồi nãy nhé, lúc nhấn gửi đáp án mới làm được 1 nửa nên chưa đúng đâu

15 tháng 5 2021

Áp dụng bất đẳng thức Minkowski ta có:

\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}=\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

\(=\sqrt{\left[\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\right]+\frac{80}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{2\sqrt{\left(x+y+z\right)^2\cdot\frac{1}{\left(x+y+z\right)^2}}+\frac{80}{1}}=\sqrt{82}\)

Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{3}\)

19 tháng 5 2021

Áp dụng bất đẳng thức Minkowski ta có:

√x2+1x2 +√y2+1y2 +√z2+1z2 ≥√(x+y+z)2+(1x +1y +1z )2

≥√(x+y+z)2+(9x+y+z )2=√(x+y+z)2+81(x+y+z)2 

=√[(x+y+z)2+1(x+y+z)2 ]+80(x+y+z)2 

≥√2√(x+y+z)2·1(x+y+z)2 +801 =√82

Dấu "=" xảy ra khi: x=y=z=13 

27 tháng 1 2021

Áp dụng BĐT BSC và BĐT \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\):

\(A=x\sqrt{y+1}+y\sqrt{x+1}\)

\(\Rightarrow A^2=\left(x\sqrt{y+1}+y\sqrt{x+1}\right)^2\)

\(\le\left(x^2+y^2\right)\left(x+y+2\right)\)

\(\le\left(x^2+y^2\right)\left[\sqrt{2\left(x^2+y^2\right)}+2\right]=\sqrt{2}+2\)

\(\Rightarrow-\sqrt{\sqrt{2}+2}\le A\le\sqrt{\sqrt{2}+2}\)

\(\Rightarrow minA=\sqrt{\sqrt{2}+2}\Leftrightarrow x=y=-\dfrac{1}{\sqrt{2}}\)

NV
15 tháng 1 2021

Đặt \(\left\{{}\begin{matrix}x=sina\\y=sinb\end{matrix}\right.\) với \(a;b\in\left(0;\dfrac{\pi}{2}\right)\)

\(P=\sqrt{sina}+\sqrt{sinb}+\sqrt[4]{12}.\sqrt{sina.cosb+cosa.sinb}\)

\(P\le\sqrt{2\left(sina+sinb\right)}+\sqrt[4]{12}.\sqrt{sin\left(a+b\right)}\)

Do \(sina+sinb=2sin\dfrac{a+b}{2}cos\dfrac{a-b}{2}\le2sin\dfrac{a+b}{2}\)

\(\Rightarrow P\le2\sqrt{sin\dfrac{a+b}{2}}+\sqrt[4]{12}.\sqrt{sin\left(a+b\right)}=2\sqrt{sint}+\sqrt[4]{12}.\sqrt{sin2t}\)

\(\Rightarrow\dfrac{P}{\sqrt{2}}\le\sqrt{2sint}+\sqrt{\sqrt{3}.sin2t}\Rightarrow\dfrac{P^2}{4}\le2sint+\sqrt{3}sin2t\)

\(\Rightarrow\dfrac{P^2}{8}\le sint\left(1+\sqrt{3}cost\right)\Rightarrow\dfrac{P^4}{64}\le sin^2t\left(1+\sqrt{3}cost\right)^2\le2sin^2t\left(1+3cos^2t\right)\)

\(\Leftrightarrow\dfrac{P^4}{128}\le sin^2t\left(4-3sin^2t\right)=-3sin^4t+4sin^2t\)

\(\Leftrightarrow\dfrac{P^4}{128}\le-3\left(sin^2t-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\le\dfrac{4}{3}\)

\(\Rightarrow P\le4.\sqrt[4]{\dfrac{2}{3}}\)

Dấu "=" xảy ra khi và chỉ khi \(sint=\sqrt{\dfrac{2}{3}}\)