\(\sqrt{x^3+12}-3x=\sqrt{x^2+5}-5\)

b,Cho x,y,z>0 thỏa mãn 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2019

b, Ta có 

\(\frac{\sqrt{x}+1}{y+1}=\frac{\left(\sqrt{x}+1\right)\left(y+1\right)-y-y\sqrt{x}}{y+1}=\sqrt{x}+1-\frac{y\left(\sqrt{x}+1\right)}{y+1}\)

Mà \(y+1\ge2\sqrt{y}\)

=> \(\frac{\sqrt{x}+1}{y+1}\ge\sqrt{x}+1-\frac{1}{2}\sqrt{y}\left(\sqrt{x}+1\right)\)

Khi đó

\(P\ge\frac{1}{2}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3-\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)

Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=3\)

=> \(P\ge\frac{1}{2}.3+3-\frac{3}{2}=3\)

Vậy MinP=3 khi x=y=z=1

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)5) Cho x, y > 1....
Đọc tiếp

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)

2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.

3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)

4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)

5) Cho x, y > 1. Tìm GTNN của \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)

6) Cho x, y, z > 0 thỏa mãn: \(xy^2z^2+x^2z+y=3z^2\). Tìm GTLN của \(P=\frac{z^4}{1+z^4\left(x^4+y^4\right)}\)

7) Cho a, b, c > 0. CMR:\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

8) Cho x>y>0. và \(x^5+y^5=x-y\). CMR: \(x^4+y^4<1\)

9) Cho \(1\le a,b,c\le2\). CMR: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)

10) Cho \(x,y,z\ge0\)CMR: \(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\le\sqrt[3]{\frac{x+y}{2}}+\sqrt[3]{\frac{y+z}{2}}+\sqrt[3]{\frac{z+x}{2}}\)

11) Cho \(x,y\ge0\)thỏa mãn \(x^2+y^2=1\)CMR: \(\frac{1}{\sqrt{2}}\le x^3+y^3\le1\)

12) Cho a,b,c > 0 và a + b + c = 12. CM: \(\sqrt{3a+2\sqrt{a}+1}+\sqrt{3b+2\sqrt{b}+1}+\sqrt{3c+2\sqrt{c}+1}\le3\sqrt{17}\)

13) Cho x,y,z < 0 thỏa mãn \(x+y+z\le\frac{3}{2}\). CMR: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge3\sqrt{17}\)

14) Cho a,b > 0. CMR: \(\left(\sqrt[6]{a}+\sqrt[6]{b}\right)\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\le4\left(a+b\right)\)

15) Với a, b, c > 0. CMR: \(\frac{a^8+b^8+c^8}{a^3.b^3.c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

16) Cho x, y, z > 0 và \(x^3+y^3+z^3=1\)CMR: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)

3
20 tháng 1 2016

cậu đăng mỗi lần 1 đến 2 câu thôi chứ nhiều thế này ai làm cho hết được

20 tháng 1 2016

Ok lần đầu mình đăng nên chưa biết, cảm ơn cậu đã góp ý, mình sẽ rút kinh nghiệm!!

1 tháng 10 2019

câu 1 sai đề

1 tháng 10 2019

\(\sqrt{x}+1chứkophải\sqrt{x+1}\)

15 tháng 8 2017

Bài 2:Áp dụng BĐT AM-GM ta có:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)

\(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}\)

\(\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}\)

CỘng theo vế 3 BĐT trên có: 

\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)

Khi x=y=z

15 tháng 8 2017

Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)

\(..........................\)

\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng theo vế ta có:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\)

15 tháng 9 2018

TA CÓ:

\(B=\frac{1}{\sqrt{x\left(y+2z\right)}}+\frac{1}{\sqrt{y\left(z+2x\right)}}+\frac{1}{\sqrt{z\left(x+2y\right)}}\ge\frac{1}{\frac{x+y+2z}{2}}+\frac{1}{\frac{y+z+2x}{2}}+\frac{1}{\frac{z+x+2y}{2}}\)

\(\ge\frac{\left(1+1+1\right)^2}{\frac{3}{2}\left(x+y+z\right)}=\frac{18}{3\sqrt{3}}=\frac{6}{\sqrt{3}}\)

DẤU BẰNG XẢY RA:\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

15 tháng 9 2018

\(\frac{B}{\sqrt{3}}=\frac{1}{\sqrt{3x\left(y+2z\right)}}+\frac{1}{\sqrt{3y\left(z+2x\right)}}+\frac{1}{\sqrt{3z\left(x+2y\right)}}\) 

\(\ge\frac{1}{\frac{3x+y+2z}{2}}+\frac{1}{\frac{3y+z+2x}{2}}+\frac{1}{\frac{3z+x+2y}{2}}\ge\frac{2\left(1+1+1\right)^2}{6\left(x+y+z\right)}=\frac{18}{6\sqrt{3}}\) 

\(\Rightarrow B\ge\frac{18\sqrt{3}}{6\sqrt{3}}=3\) 

Dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\)

đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)\(\Leftrightarrow x^5-x^2\ge3x-3\)cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)áp dụng bunhia ta...
Đọc tiếp

đặt \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)

ta có:\(\left(x^3+2x^2+3x+3\right)\left(x-1\right)^2\ge0\)

\(\Leftrightarrow x^5-x^2\ge3x-3\)

cmtt=>\(y^5-y^2\ge3y-3;z^5-z^2\ge3z-3\)

\(\Rightarrow P\le\frac{1}{\sqrt{3x-3+3xy+6}}+\frac{1}{\sqrt{3y-3+3yz+6}}+\frac{1}{\sqrt{3z-3+3zx+6}}\)

\(=\frac{1}{\sqrt{3\left(x+xy+1\right)}}+\frac{1}{\sqrt{3\left(y+yz+1\right)}}+\frac{1}{\sqrt{3\left(z+zx+1\right)}}\)

áp dụng bunhia ta có:

\(3\left(x+xy+1\right)\ge\left(\sqrt{x}+\sqrt{xy}+1\right)^2\)

cmtt\(\Rightarrow P\le\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}\)

đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\)

\(\Rightarrow\frac{1}{\sqrt{x}+\sqrt{xy}+1}+\frac{1}{\sqrt{y}+\sqrt{yz}+1}+\frac{1}{\sqrt{z}+\sqrt{zx}+1}=\frac{1}{a+ab+1}+\frac{1}{b+bc+1}+\frac{1}{c+ca+1}\)

\(=\frac{abc}{a+ab+abc}+\frac{1}{b+bc+1}+\frac{b}{bc+abc+b}=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}=1\)

\(\Rightarrow P\le1\)

2
28 tháng 8 2017

Bạn làm đúng rồi

28 tháng 8 2017

mình học lớp 9 cho tớ hỏi sửa lớp ở đâu

19 tháng 8 2019

ráng làm nốt rồi đi ngủ thoyy

1.

a) ĐK: \(x\ge2\)

\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}-\sqrt{x-2}-\sqrt{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\varnothing\end{matrix}\right.\)

Vậy...

b) \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)

\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=4x^2+4x+1+x+8-x^2+2x-1\)

\(\Leftrightarrow2\left(2x+1\right)\sqrt{x+8}=\left(2x+1\right)^2+\left(x+8\right)-\left(x-1\right)^2\)

\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x-1\right)\sqrt{x+8}+\left(x+8\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-\sqrt{x+8}\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-\sqrt{x+8}-x+1\right)\left(2x+1-\sqrt{x+8}+x-1\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x+8}+2\right)\left(3x-\sqrt{x+8}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{x+8}\\3x=\sqrt{x+8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\)

Vậy...

c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)

Nhân cả 2 vế với \(\sqrt{2}\) ta được :

\(pt\Leftrightarrow\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x-2\sqrt{2x-1}}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|=2\)

Ta có : \(\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}-1\right|\)

\(=\left|\sqrt{2x-1}+1\right|+\left|1-\sqrt{2x-1}\right|\ge\left|\sqrt{2x-1}+1+1-\sqrt{2x-1}\right|=2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{2x-1}+1\right)\left(1-\sqrt{2x-1}\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le1\)

2) \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right):\frac{1}{x+y+z}=1\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{z-x-y-z}{z\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)

\(\Leftrightarrow z\left(x+y\right)\left(x+y+z\right)=-xy\cdot\left(x+y\right)\)

\(\Leftrightarrow\left(x+y\right)\left(xz+yz+z^2+xy\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

TH1: \(x=-y\Leftrightarrow x^{29}=-y^{29}\Leftrightarrow x^{29}+y^{29}=0\)

Khi đó \(B=0\cdot\left(x^{11}+y^{11}\right)\cdot\left(x^{2013}+y^{2013}\right)=0\)

Tương tự 2 trường hợp còn lại ta đều được \(B=0\)

Vậy \(B=0\)

19 tháng 8 2019

yeu

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3