Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\left(1-\sqrt{x}\right)\left(5\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{2-5\sqrt{x}}{3+\sqrt{x}}\)
\(N=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{2-\sqrt{x}}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\sqrt{x}-3}{2-\sqrt{x}}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{\sqrt{x}}{\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=-3:\left(\frac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)}\right)\)
\(=3.\left(\frac{\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)}\right)\)
Lời giải:
a) ĐK: $x>0; x\neq 9$
Ta có:
\(A=\frac{\sqrt{x}+15}{(\sqrt{x}-3)(\sqrt{x}+3)}-\frac{x}{\sqrt{x}(\sqrt{x}-3)}+\frac{2\sqrt{x}+5}{\sqrt{x}+3}\)
\(A=\frac{\sqrt{x}+15}{(\sqrt{x}-3)(\sqrt{x}+3)}-\frac{\sqrt{x}(\sqrt{x}+3)}{(\sqrt{x}+3)(\sqrt{x}-3)}+\frac{(2\sqrt{x}+5)(\sqrt{x}-3)}{(\sqrt{x}+3)(\sqrt{x}-3)}\)
\(=\frac{\sqrt{x}+15-x-3\sqrt{x}+2x-\sqrt{x}-15}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{x-3\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)
b)
\(A=2B\Leftrightarrow \frac{\sqrt{x}}{\sqrt{x}+3}=\frac{2(\sqrt{x}-3)}{14}=\frac{\sqrt{x}-3}{7}\)
\(\Rightarrow 7\sqrt{x}=x-9\Leftrightarrow x-7\sqrt{x}-9=0\)
\(\Rightarrow \sqrt{x}=\frac{7+\sqrt{85}}{2}\Leftrightarrow x=\frac{67+7\sqrt{85}}{2}\)
1) Sửa đề: \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Ta có: \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{15\sqrt{x}-11-\left(3x+7\sqrt{x}-6\right)-\left(2x+\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
Ta có: \(x=3-2\sqrt{2}\)
\(=2-2\cdot\sqrt{2}\cdot1+1\)
\(=\left(\sqrt{2}-1\right)^2\)
Thay \(x=\left(\sqrt{2}-1\right)^2\) vào biểu thức \(A=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\), ta được:
\(A=\frac{-5\cdot\sqrt{\left(\sqrt{2}-1\right)^2}+2}{\sqrt{\left(\sqrt{2}-1\right)^2}+3}\)
\(=\frac{-5\cdot\left(\sqrt{2}-1\right)+2}{\sqrt{2}-1+3}\)
\(=\frac{-5\sqrt{2}+5+2}{\sqrt{2}+2}\)
\(=\frac{-5\sqrt{2}+7}{\sqrt{2}+2}\)
Vậy: Khi \(x=3-2\sqrt{2}\) thì \(A=\frac{-5\sqrt{2}+7}{\sqrt{2}+2}\)
2) Ta có: \(B=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\)
\(=\frac{\left(x+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x\sqrt{x}+x+2\sqrt{x}+2+x+x\sqrt{x}-\sqrt{x}-1-\left(2x+2\sqrt{x}+x\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{2x+2x\sqrt{x}+\sqrt{x}+1-2x-2\sqrt{x}-x\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(x-1\right)}{\left(x-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
Ta có: \(x=7-2\sqrt{6}\)
\(=6-2\sqrt{6}\cdot1+1\)
\(=\left(\sqrt{6}-1\right)^2\)
Thay \(x=\left(\sqrt{6}-1\right)^2\) vào biểu thức \(B=\frac{\sqrt{x}}{x+\sqrt{x}+1}\), ta được:
\(B=\frac{\sqrt{\left(\sqrt{6}-1\right)^2}}{\left(\sqrt{6}-1\right)^2+\sqrt{\left(\sqrt{6}-1\right)^2}+1}\)
\(=\frac{\sqrt{6}-1}{7-2\sqrt{6}+\sqrt{6}-1+1}\)
\(=\frac{\sqrt{6}-1}{7-\sqrt{6}}\)
Vậy: Khi \(x=7-2\sqrt{6}\) thì \(B=\frac{\sqrt{6}-1}{7-\sqrt{6}}\)
3) Ta có: \(C=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\frac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)
\(=\frac{\sqrt{x}\left(x-3\sqrt{x}-x-9\right)}{\left(\sqrt{x}+3\right)\left(2\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}\left(-3\sqrt{x}-9\right)}{\left(\sqrt{x}+3\right)\cdot2\cdot\left(\sqrt{x}+2\right)}\)
\(=\frac{-3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(2\sqrt{x}+4\right)}\)
\(=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)
Ta có: \(x=7-4\sqrt{3}\)
\(=4-2\cdot2\cdot\sqrt{3}+3\)
\(=\left(2-\sqrt{3}\right)^2\)
Thay \(x=\left(2-\sqrt{3}\right)^2\) vào biểu thức \(C=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\), ta được:
\(C=\frac{-3\cdot\sqrt{\left(2-\sqrt{3}\right)^2}}{2\cdot\sqrt{\left(2-\sqrt{3}\right)^2}+4}\)
\(=\frac{-3\cdot\left(2-\sqrt{3}\right)}{2\cdot\left(2-\sqrt{3}\right)+4}\)
\(=\frac{-6+3\sqrt{3}}{4-2\sqrt{3}+4}\)
\(=\frac{-6+3\sqrt{3}}{8-2\sqrt{3}}\)
Vậy: Khi \(x=7-4\sqrt{3}\) thì \(C=\frac{-6+3\sqrt{3}}{8-2\sqrt{3}}\)
c) \(C=\frac{\left(2\sqrt{x}+x\right)\left(\sqrt{x}+1\right)-\left(x\sqrt{x}-1\right)}{\left(x\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{x+\sqrt{x}+1-\left(\sqrt{x}+2\right)}{x+\sqrt{x}+1}=\)
\(C=\frac{x\sqrt{x}+2x+x+2\sqrt{x}-x\sqrt{x}+1}{\left(\left(\sqrt{x}\right)^3-1\right)\left(\sqrt{x}+1\right)}\times\frac{x+\sqrt{x}+1}{x-1}=\)
\(C=\frac{3x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\times\frac{x+\sqrt{x}+1}{x-1}=\)
\(C=\frac{3x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\frac{1}{x-1}=\)
\(C=\frac{3x+2\sqrt{x}+1}{x-1}\times\frac{1}{x-1}=\frac{3x+2\sqrt{x}+1}{\left(x-1\right)^2}.\)
Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé
Bạn tham khảo lời giải tại đây:
Câu hỏi của cielxelizabeth - Toán lớp 9 | Học trực tuyến
Và nhớ lần sau gõ đầy đủ yêu cầu đề bài.
\(A=\frac{\sqrt{x}+15}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{x}{\sqrt{x}\left(\sqrt{x}-3\right)}+\frac{2\sqrt{x}+5}{\sqrt{x}+3}\)
\(A=\frac{\sqrt{x}\left(\sqrt{x}+15\right)}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{x\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}\left(\sqrt{x}-3\right)\left(2\sqrt{x}+5\right)}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{x+15\sqrt{x}-x\sqrt{x}-3x+2x\sqrt{x}+5x-6x-15\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{x\sqrt{x}-3x}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{x\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)