Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
Điều kiện: x \(\ge\)0; x \(\ne\) 4;x \(\ne\) 9
\(A=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(A=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right).\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x}-2\right)}\)
\(A=\frac{2\sqrt{x}-9-\left(x-9\right)+\left(2x-4\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}\)
\(A=\frac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để A nguyên thì \(\frac{4}{\sqrt{x}-3}\) nguyên <=> \(\sqrt{x}-3\) \(\in\)Ư(4) = {4;-4;2;-2;1;-1}
\(\sqrt{x}-3\) | 4 | -4 | 2 | -2 | 1 | -1 |
\(\sqrt{x}\) | 7 | -1 | 5 | 1 | 4 | 2 |
x | 49 | loại | 25 | 1 | 16 | 4 |
Đối chiếu điều kiện => x \(\in\) {49;25;1;16}
ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)
\(\Rightarrow0\le x< \frac{9}{4}\)
c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)
Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)
Vậy \(MinR=-3\Leftrightarrow x=0\)