Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a, 3x + |x - 2| = 8
<=> |x - 2| = 8 - 3x
Xét 2 TH :
TH1: x - 2 = 8 - 3x
<=> x + 3x = 8 + 2
<=> 4x = 10
<=> x = \(\dfrac{5}{2}\) (thỏa mãn)
TH2: x - 2 = -(8 - 3x)
<=> x - 2 = -8 + 3x
<=> -2 + 8 = 3x - x
<=> 6 = 2x
<=> x = 3 (thỏa mãn)
b, 5 - |x - 1| = 4
<=> |x - 1| = 1
<=> \(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\) (thỏa mãn)
@Nguyễn Hoàng Vũ
2. 5.(x - 2) - 4.(1 - 3x) = |3 - 7| + 2.(1 + 2x)
<=> 5x - 10 - 4 + 12x = 4 + 2 + 4x
<=> 17x - 14 = 6 + 4x
<=> 17x - 4x = 6 + 14
<=> 13x = 20
<=> x = \(\dfrac{20}{13}\) (thỏa mãn)
@Nguyễn Hoàng Vũ
Bài 1:
\(\left(-\dfrac{72}{40}-\dfrac{144}{60}-2\dfrac{1}{3}\right):\left(\dfrac{45}{100}-\dfrac{25}{60}+-\dfrac{75}{25}\right)\)
\(=\left(-\dfrac{9}{5}-\dfrac{12}{5}-\dfrac{7}{3}\right):\left(\dfrac{9}{20}-\dfrac{5}{12}+-3\right)\)
\(=\left(-\dfrac{27}{15}-\dfrac{36}{15}-\dfrac{21}{15}\right):\left(\dfrac{27}{60}-\dfrac{25}{60}+-3\right)\)
\(=\left(-\dfrac{28}{5}\right):\left(-\dfrac{89}{30}\right)\)
\(=\left(-\dfrac{28}{5}\right).\left(-\dfrac{30}{89}\right)\)
\(=\dfrac{168}{89}\)
>> Với toán lớp 6 chắc đề bài là tìm x,y nhỉ ? . Lần sau bạn nhớ viết tên đề bài nhé ;) <<
a) \((x−3).(y−2)=7\)
\(\Rightarrow\left(x\text{−}3\right)\inƯ\left(7\right)\)
\(\Rightarrow x\text{−}3\in\left\{1;\text{−}1;7;\text{−}7\right\}\)
Ta có bảng sau :
\(x\text{−}3\) | \(1\) | \(−1\) | \(7\) | \(−7\) |
\(x\) | \(4\) | \(2 \) | \(10\) | \(\text{−}4\) |
\(y−2\) | 7 | −7 | 1 | −1 |
\(y\) | 9 | −5 | 3 | 1 |
Vậy .....
b) \((x−1).(y−1)=2\)
\(\Rightarrow\left(x\text{−}1\right)\inƯ\left(2\right)\)
\(\Rightarrow x\text{−}1\in\left\{1;\text{−}1;2;\text{−}2\right\}\)
Ta có bảng sau :
x−1 | 1 | −1 | 2 | −2 |
x | 2 | 0 | 3 | −1 |
y−1 | 2 | −2 | 1 | −1 |
y | 3 | −1 | 2 | 0 |
Vậy ......
c) \((x−1).(y−2) = 2\)
\(\Rightarrow x\text{−}1\inƯ\left(2\right)\)
\(\Rightarrow x\text{−}1\in\left\{1;\text{−}1;2;\text{−}2\right\}\)
Ta có bảng sau :
x−1 | 1 | −1 | 2 | −2 |
x | 2 | 0 | 3 | −1 |
y−2 | 2 | −2 | 1 | −1 |
y | 4 | 0 | 3 | 1 |
Vậy ...
\(\left(x+1\right)\left(y-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0-1\\y=0+2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy x = - 1 ; y = 2
G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)
=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)
=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)
=> G = \(\frac{2.50}{1.51}\)
=> G = \(\frac{100}{51}\)
Bài 1:
a) Ta có: \(\frac{5}{6}-\frac{2}{3}+\frac{1}{4}\)
\(=\frac{10}{12}-\frac{8}{12}+\frac{3}{12}\)
\(=\frac{2+3}{12}=\frac{5}{12}\)
b) Ta có: \(1\frac{11}{12}-\frac{5}{12}\cdot\left(\frac{4}{5}-\frac{1}{10}\right):\frac{-5}{12}\)
\(=\frac{23}{12}-\frac{5}{12}\cdot\left(\frac{8}{10}-\frac{1}{10}\right)\cdot\frac{-12}{5}\)
\(=\frac{23}{12}-\frac{5}{12}\cdot\frac{7}{10}\cdot\frac{-12}{5}\)
\(=\frac{23}{12}-\frac{-7}{10}\)
\(=\frac{115}{60}+\frac{42}{60}=\frac{157}{60}\)
Bài 2:
a) Ta có: \(\frac{1}{2}\cdot x-\frac{2}{5}=\frac{1}{5}\)
\(\Leftrightarrow\frac{1}{2}\cdot x=\frac{1}{5}+\frac{2}{5}=\frac{3}{5}\)
\(\Leftrightarrow x=\frac{3}{5}:\frac{1}{2}=\frac{3}{5}\cdot2=\frac{6}{5}\)
Vậy: \(x=\frac{6}{5}\)
b) Ta có: \(\left(1-2x\right)\cdot\frac{4}{3}=\left(-2\right)^3\)
\(\Leftrightarrow\left(1-2x\right)\cdot\frac{4}{3}=-8\)
\(\Leftrightarrow1-2x=-8:\frac{4}{3}=-8\cdot\frac{3}{4}=-6\)
\(\Leftrightarrow-2x=-6-1=-7\)
hay \(x=\frac{7}{2}\)
Vậy: \(x=\frac{7}{2}\)