Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\left(\frac{2}{1001}-\frac{3}{2002}\right).\frac{1001}{17}+\frac{33}{34}\right]:\left[\left(\frac{7}{1008}+\frac{11}{2016}\right).\frac{1008}{25}+\frac{1009}{2016}\right]\)
\(=\left[\left(\frac{4}{2002}-\frac{3}{2002}\right).\frac{1001}{17}+\frac{33}{34}\right]:\left[\left(\frac{14}{2016}+\frac{11}{2016}\right).\frac{1008}{25}+\frac{1009}{2016}\right]\)
\(=\left(\frac{1}{2002}.\frac{1001}{17}+\frac{33}{34}\right):\left(\frac{25}{2016}.\frac{1008}{25}+\frac{1009}{2016}\right)\)
\(=\left(\frac{1}{34}+\frac{33}{34}\right):\left(\frac{1}{2}+\frac{1009}{2016}\right)\)
\(=1:\frac{2017}{2016}\)
\(=\frac{2016}{2017}\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)\)
\(S=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}\)
\(\Rightarrow\left(S-P\right)^{2016}=\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}-\frac{1}{1008}-\frac{1}{1009}-...-\frac{1}{2015}\right)^{2016}=0^{2016}=0\)
Ta thấy:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)+\frac{1}{2015}\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)+\frac{1}{2015}\)
\(S=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}+\frac{1}{2015}\)
Mà \(P=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}+\frac{1}{2015}\) nên:
\(S=P\)\(\Rightarrow S-P=0\)\(\Rightarrow\left(S-P\right)^{2016}=0\)
Bài này dễ,ông không chịu làm thì có ^_^:
Ta có:\(B=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+....+\left(\frac{1}{2^{2014}+1}+....+\frac{1}{2^{2015}}\right)+\frac{1}{2^{2015}+1}+...+\frac{1}{2^{2016}-1}\)
\(>1+\frac{1}{2}+2.\frac{1}{2^2}+2^2.\frac{1}{2^3}+........+2^{2014}.\frac{1}{2^{2015}}\)
\(=1+\frac{1}{2}+\frac{1}{2}+.........+\frac{1}{2}\) (có 2015 phân số \(\frac{1}{2}\))
\(=1+2014.\frac{1}{2}+\frac{1}{2}=1008+\frac{1}{2}>1008\)