Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}\frac{1}{9} - 0,3.\frac{5}{9} + \frac{1}{3}\\ = \frac{1}{9} - \frac{3}{{10}}.\frac{5}{9} + \frac{1}{3}\\ = \frac{1}{9} - \frac{3}{{2.5}}.\frac{5}{{3.3}} + \frac{1}{3}\\ = \frac{1}{9} - \frac{1}{6} + \frac{1}{3}\\ = \frac{2}{{18}} - \frac{3}{{18}} + \frac{6}{{18}}\\ = \frac{5}{{18}}\end{array}\)
b)
\(\begin{array}{l}{\left( {\frac{{ - 2}}{3}} \right)^2} + \frac{1}{6} - {\left( { - 0,5} \right)^3}\\ = \frac{4}{9} + \frac{1}{6} - \left( {\frac{{ - 1}}{2}} \right)^3\\ = \frac{4}{9} + \frac{1}{6} - \left( {\frac{{ - 1}}{8}} \right)\\ = \frac{4}{9} + \frac{1}{6} + \frac{1}{8}\\ = \frac{{32}}{{72}} + \frac{{12}}{{72}} + \frac{9}{{72}}\\ = \frac{{53}}{{72}}\end{array}\)
Cũng khuya rồi , mình làm câu 1 thôi nhé !
\(\frac{2.5^{22}-9.5^{21}}{25^{10}}=\frac{2.5^{22}-9.5^{21}}{\left(5^2\right)^{10}}\)
\(\frac{5^{21}.\left(2.5-9\right)}{5^{20}}=5.\left(10-9\right)=5\)
a) \(\left(-\frac{5}{2}\right)^2:\left(-15\right)-\left(-0,45+\frac{3}{4}\right).\left(-1\frac{5}{9}\right)\)
= \(-\frac{25}{4}:\left(-15\right)-\left(\frac{9}{20}+\frac{15}{20}\right).\left(-\frac{14}{9}\right)\)
=\(-\frac{25}{4}.\frac{1}{-15}-\frac{6}{5}.\left(-\frac{14}{9}\right)\)
= \(\frac{-5}{12}-\frac{8}{5}\)
= \(\frac{\left(-25\right)-96}{60}\)
= \(\frac{\left(-25\right)+\left(-96\right)}{60}\)
=\(\frac{121}{60}\)
b) \(\left(\frac{-1}{3}\right)-\left(\frac{-3}{5}\right)^0+\left(1-\frac{1}{2}\right)^2:2\)
= \(\left(\frac{-1}{3}\right)-1+\left(\frac{1}{2}\right)^2.\frac{1}{2}\)
=\(\left(\frac{-1}{3}\right)-\frac{3}{3}+\frac{1}{4}.\frac{1}{2}\)
= \(\frac{-4}{3}+\frac{1}{8}\)=\(\frac{-32+3}{24}\)
=\(\frac{-29}{24}\)
c) E=\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
=\(\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.6^9}{2^{10}.3^8+6^8.20}\)
=\(\frac{2^{10}.3^8-2.6^9}{2^{10}.3^8+6^8.20}\)
=\(\frac{3}{5}\)
d)\(\frac{5^4.20^4}{25^5.4^5}\)
=\(\frac{\left(5.20\right)^4}{\left(25.4\right)^5}\)
=\(\frac{100^4}{100^5}\)
=\(\frac{1}{100}\)
Bài 1:
a) Ta có: \(25\cdot\left(\frac{-1}{5}\right)^3+\frac{1}{5}-2\cdot\left(\frac{-1}{2}\right)^2-\frac{1}{2}\)
\(=25\cdot\frac{-1}{125}+\frac{1}{5}-2\cdot\frac{1}{4}-\frac{1}{2}\)
\(=-\frac{1}{5}+\frac{1}{5}-\frac{1}{2}-\frac{1}{2}\)
\(=\frac{-2}{2}=-1\)
b) Ta có: \(35\frac{1}{6}:\left(\frac{-4}{5}\right)-46\frac{1}{6}:\left(\frac{-4}{5}\right)\)
\(=\frac{211}{6}\cdot\frac{-5}{4}-\frac{277}{6}\cdot\frac{-5}{4}\)
\(=\frac{-5}{4}\cdot\left(\frac{211}{6}-\frac{277}{6}\right)\)
\(=\frac{-5}{4}\cdot\left(-11\right)=\frac{55}{4}\)
c) Ta có: \(\left(\frac{-3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
\(=\frac{-7}{20}\cdot\frac{7}{3}+\frac{7}{20}\cdot\frac{7}{3}\)
\(=\frac{7}{3}\cdot\left(-\frac{7}{20}+\frac{7}{20}\right)=\frac{7}{3}\cdot0=0\)
d) Ta có: \(\frac{7}{8}:\left(\frac{2}{9}-\frac{1}{18}\right)+\frac{7}{8}\cdot\left(\frac{1}{36}-\frac{5}{12}\right)\)
\(=\frac{7}{8}\cdot6+\frac{7}{8}\cdot\frac{-7}{18}\)
\(=\frac{7}{8}\cdot\left(6+\frac{-7}{18}\right)\)
\(=\frac{7}{8}\cdot\frac{101}{18}=\frac{707}{144}\)
e) Ta có: \(\frac{1}{6}+\frac{5}{6}\cdot\frac{3}{2}-\frac{3}{2}+1\)
\(=\frac{1}{6}+\frac{15}{12}-\frac{3}{2}+1\)
\(=\frac{2}{12}+\frac{15}{12}-\frac{18}{12}+\frac{12}{12}\)
\(=\frac{11}{12}\)
f) Ta có: \(\left(-0,75-\frac{1}{4}\right):\left(-5\right)+\frac{1}{15}-\left(-\frac{1}{5}\right):\left(-3\right)\)
\(=\left(-1\right):\left(-5\right)+\frac{1}{15}-\frac{1}{15}\)
\(=\frac{1}{5}\)
a) \(A=\left(1:\frac{1}{4}\right).4+25\left(1:\frac{16}{9}:\frac{125}{64}\right):\left(-\frac{27}{8}\right)\)
\(=4.4+25.\frac{36}{125}:\frac{-27}{8}\)
\(=16-\frac{32}{15}=\frac{240}{15}-\frac{32}{15}=\frac{208}{15}\)