\(A=\frac{1}{x+1\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}\)  với x>0; x khá...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

\(A=\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}-1+2\sqrt{x}-\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{2}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

29 tháng 8 2019

a, ĐKXĐ : \(\left[{}\begin{matrix}x\ge0\\ y>0\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x>0\\y\ge0\end{matrix}\right.\)

Ta có :\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\sqrt{x^2}\sqrt{x}+\sqrt{y^2}\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)

= \(\left(x-\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\)

= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

= \(\sqrt{xy}\)

29 tháng 8 2019

\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) \(=\sqrt{\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{b}+1\right)\left(\sqrt{b}-1\right)}}\)\(=\sqrt{\frac{a^2-1}{b^2-1}}\) (*)

Thay a=7,25 và b= 3,25 vào (*) ta có:

\(\sqrt{\frac{7,25^2-1}{3,25^2-1}}\) \(=\frac{5\sqrt{33}}{4}:\frac{3\sqrt{17}}{4}=\frac{5\sqrt{33}}{3\sqrt{17}}=\frac{5\sqrt{561}}{51}\)

13 tháng 8 2019

bài 1
P=\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right)\)

=\(\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{...}-\frac{\left(x+\sqrt{x}+1\right)}{...}\right):\frac{\sqrt{x}-1}{2}\)

=\(\left(\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)

=\(\left(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)

=\(\left(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)

=\(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}.\frac{2}{\sqrt{x}-1}\)

=\(\frac{2}{x+\sqrt{x}+1}\)

P>0 dựa vào dkxd

13 tháng 8 2019

b giống a

13 tháng 8 2019

Bài 1:

a) P= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\) (x ≥ 0; x ≠ 4)

=\(\left(\frac{x+2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\cdot\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)

= \(\left(\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)

=\(\left(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)

=\(\frac{\left(\sqrt{x}-1\right)^2\cdot2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)\cdot\left(\sqrt{x}-1\right)}\)

=\(\frac{2}{x+\sqrt{x}+1}\)

b) Ta có: x ≥ 0 ⇒ \(\sqrt{x}\) ≥ 0

\(x+\sqrt{x}+1\) ≥ 1 > 0

mà 2 > 0 ⇒ \(\frac{2}{x+\sqrt{x}+1}\) > 0 ⇒ P > 0

Bài 2:

a) P= \(\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\) (x ≥ 0; x ≠ 1)

=\(\left(\frac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)

=\(\left(\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\right)\)

=\(\left(\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x-1}{x+\sqrt{x}+1}\right)\)

=\(\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\cdot\frac{x+\sqrt{x}+1}{x-1}\)

=\(\frac{1}{x-1}\)

b) Ta có: \(\sqrt{P}=\sqrt{\frac{1}{x-1}}\)

= \(\frac{1}{\sqrt{x-1}}\)

x = \(5+2\sqrt{3}\) (TM)

Thay x vào \(\sqrt{P}\) ta có:

\(\sqrt{P}=\frac{1}{\sqrt{5+2\sqrt{3}-1}}\)

=\(\frac{1}{\sqrt{4+2\sqrt{3}}}\)

=\(\frac{1}{\sqrt{3+2\sqrt{x}+1}}\)

=\(\frac{1}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)

=\(\frac{1}{\left|\sqrt{3}+1\right|}\)

=\(\frac{1}{\sqrt{3}+1}\)

= \(\frac{\sqrt{3}-1}{\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-1\right)}\)

=\(\frac{\sqrt{3}-1}{2}\)

Vậy \(\sqrt{P}=\frac{\sqrt{3}-1}{2}\) khi x = \(5+2\sqrt{3}\)

NV
16 tháng 9 2019

\(A=\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

Dấu giữa 2 biểu thức là dấu chia sẽ hợp lý hơn

Khi đó \(A=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

\(A>\frac{1}{6}\Rightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}>\frac{1}{6}\Rightarrow2\sqrt{x}-4>\sqrt{x}\)

\(\Rightarrow\sqrt{x}>4\Rightarrow x>16\)

17 tháng 9 2019

Uk. Tại mk thấy nó là dấu nhân nên ko lm đc nên đăng. dù s cũng cảm ơn bn!!

8 tháng 11 2020

A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)

Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)

9 tháng 11 2020

C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)

Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0

10 tháng 4 2020

cm mẫu > 0 ms lm vầy đc

p/s: nhờ nhân vậy tui rớt huyện đó

10 tháng 4 2020

Thì nó lớn hơn 0 tui mới làm vậy mà. Bất pt chứ có phải pt đâu