K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

ta có a+1/a>=2√(a*1/a)=2 (bđt cô si)

dấu = xảy ra khi a=1

28 tháng 12 2017

thế mà bảo toán lớp 1 

29 tháng 12 2017

Áp dụng bđt bu nhi a, ta có \(M^2\le3\left(\frac{a}{b+c+2a}+...\right)\)

mà \(\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

tương tự, ta có \(M^2\le\frac{3}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{c+b}\right)=\frac{9}{4}\)

=>\(M\le\frac{3}{2}\)

dấu = xảy ra <=> a=b=c

đây mà gọi là toán lớp 1 hả trời ??????????????????????

6 tháng 3 2019

bn lên mạng hoặc vào câu hỏi tương tự nha!

chúc bn hok tốt!

hahaha!

#conmeo#

23 tháng 11 2015

đây ko phải toán lớp 1 toán lớp 1 làm gì mà khó thế

25 tháng 7 2020

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

25 tháng 7 2020

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

14 tháng 4 2016

Vì a,b,c,d có vai trò như nhau

Giả sử \(a\ge b\ge c\ge d\)

=>\(a^2\ge b^2\ge c^2\ge d^2\)

=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\le\frac{1}{d^2}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\le\frac{1}{d^2}+\frac{1}{d^2}+\frac{1}{d^2}+\frac{1}{d^2}\)

=>\(1\le4.\frac{1}{d^2}\)

=>\(\frac{1}{4}\le\frac{1}{d^2}\)

=>\(4\ge d^2\)

=>\(2\ge d\)

Vì d là số tự nhiên khác 0

=>d=1,2

-Xét d=1

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{1^2}=1\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+1=1\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=0\)

\(\frac{1}{a^2}>0,\frac{1}{b^2}>0,\frac{1}{c^2}>0=>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}>0\)

=>Vô lí

-Xét d=2

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{2^2}=1\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{4}=1\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)

Vì \(a\ge b\ge c\)

=>\(a^2\ge b^2\ge c^2\)

=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{c^2}\)

=>\(\frac{3}{4}\le3.\frac{1}{c^2}\)

=>\(\frac{1}{4}\le\frac{1}{c^2}\)

=>\(4\ge c^2\)

=>\(2\ge c\)

Vì \(c\ge d=>c\ge2\)

=>c=2

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{2^2}=\frac{3}{4}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{4}=\frac{3}{4}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{2}{4}\)

Vì \(a\ge b\)

=>\(a^2\ge b^2\)

=>\(\frac{1}{a^2}\le\frac{1}{b^2}\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{b^2}+\frac{1}{b^2}\)

=>\(\frac{2}{4}\le\frac{2}{b^2}\)

=>\(\frac{1}{4}\le\frac{1}{b^2}\)

=>\(4\ge b^2\)

=>\(2\ge b\)

Vì \(b\ge c=>b\ge2\)

=>b=2

=>\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{2}{4}\)

=>\(\frac{1}{a^2}+\frac{1}{2^2}=\frac{2}{4}\)

=>\(\frac{1}{a^2}+\frac{1}{4}=\frac{2}{4}\)

=>\(\frac{1}{a^2}=\frac{1}{4}\)

=>\(a^2=4=>a=2\)

Vậy a=2,b=2,c=2,d=2

What??!!!!!!!

Đây là bài toán lớp 1 ???

Bn có nhầm ko z??

BN mún hỏi j vậy, đây k phải câu hỏi, mà có thì phải là toán lớp 6

3 tháng 8 2020

1+1+1+1+1+2=7

3 tháng 8 2020

đặt \(\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}+\sqrt{c^2+\frac{1}{c^2}}=P\)

phương pháp khảo sát hàm đặc trưng rất hữu hiệu cho những bài bất đẳng thức đối xứng

bài toán cho f(x)+f(y)-f(z) >= A

tìm min, max của S-g(x)+g(y)+g(z)

*nháp

điều kiện x,y,z thuộc D, dự đoán dấu bằng xảy ra khi x=y=z=\(\alpha\). Khảo sát hàm đặc trưng h(t)-g(t)-mf(t) với m=\(\frac{g'\left(\alpha\right)}{f'\left(\alpha\right)}\)sau khi đã tìm được m chỉ cần xét đạo hàm h(t) nữa là xong

ta khảo sát hàm \(f\left(x\right)=\sqrt{x^2+\frac{1}{x^2}}-mx\)

để hàm số có cực tiểu thì f(x)=0 \(\Leftrightarrow\frac{x^4-1}{x^3\sqrt{x^2+\frac{1}{x^2}}}-m=0\)nhận thấy "=" ở x=\(\frac{1}{3}\)nên m=\(\frac{80}{-\sqrt{82}}\)

xét hàm số đại diện f(t)=\(\sqrt{t^2+\frac{1}{t^2}}-\frac{80}{\sqrt{82}}t\)trên (0;1) có f(t)\(\ge f\left(\frac{1}{3}\right)=\frac{162}{3\sqrt{82}}\)

vậy thì \(P\ge-\frac{80}{\sqrt{82}}\left(x+y+z\right)+\frac{162}{\sqrt{82}}=\sqrt{82}\)

bài toán được chứng minh xong

23 tháng 12 2018

Đây mà là toán lớp 1 à ?