Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25S = 1 - 1/52+1/54- 1/56+.......+1/52008- 1/52010
Cộng 2 vế với S ta có :
26S = 1 - 1/52012 < 1 suy ra S< 1/26
\(5^2.S=1-\frac{1}{5^2}+\frac{1}{5^4}-.....+\frac{1}{5^{2008}}-\frac{1}{5^{2010}}\)
\(25S=1-\frac{1}{5^2}+\frac{1}{5^4}-...+\frac{1}{5^{2008}}-\frac{1}{5^{2010}}\)Cộng 2 vế với S ta có
\(26S=1-\frac{1}{5^{2012}}\)\(\Rightarrow26S< 1\Rightarrow S< \frac{1}{26}\)
\(|x-\frac{1}{3}|=|\left(-3.2\right)+\frac{2}{5}|\)
\(\Rightarrow|x-\frac{1}{3}|=|-3.2+0.4|\)
\(\Rightarrow|x-\frac{1}{3}|=|-2.8|\)
\(\Rightarrow|x-\frac{1}{3}|=2.8\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=2.8\\x-\frac{1}{3}=-2.8\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{43}{15}\\x=-\frac{41}{15}\end{cases}}\)
tính lại kết quả nhé
\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+....+\frac{10}{5^{10}}+\frac{11}{5^{11}}\)
\(\Rightarrow5A=1+\frac{2}{5}+\frac{3}{5^2}+....+\frac{10}{5^9}+\frac{11}{5^{10}}\)
\(\Rightarrow5A-A=\left(1+\frac{2}{5}+...+\frac{11}{5^{10}}\right)-\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\right)\)
\(\Rightarrow4A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)(1)
Đặt \(B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)
\(\Rightarrow5B=5+1+\frac{1}{5}+...+\frac{1}{5^9}\)
\(\Rightarrow5B-B=\left(5+1+...+\frac{1}{5^9}\right)-\left(1+\frac{1}{5}+...+\frac{1}{5^{10}}\right)\)
\(\Rightarrow4B=5-\frac{1}{5^{10}}< 5\)
\(\Rightarrow B< \frac{5}{4}\)(2)
Thay (2) vào (1) \(\Rightarrow4A< \frac{5}{4}-\frac{11}{5^{11}}< \frac{5}{4}\)
\(\Rightarrow A< \frac{5}{16}\left(đpcm\right)\)
\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)
\(=\frac{1}{5}+\frac{2}{3}\)
\(=\frac{13}{15}\)
\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\Rightarrow5A=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{11}{5^{10}}\)
\(\Rightarrow4A=5A-A=1+\left(\frac{1}{5}+\frac{1}{5^2}+\frac{...1}{5^{10}}\right)-\frac{11}{5^{11}}\)
\(< 1+\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\right)< 1+\frac{1}{4}=\frac{5}{4}\)
\(\Rightarrow A< \frac{5}{4}:4=\frac{5}{16}\)
Lưu ý : \(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\Rightarrow5M=1+\frac{1}{5}+...+\frac{1}{5^9}\Rightarrow4M=5M-M=1-\frac{1}{5^{10}}\)
\(\Rightarrow M=\frac{1}{4}-\frac{1}{5^{10}}:4< \frac{1}{4}\)