\(A=\frac{1.5\cdot6+2\cdot10\cdot12+3\cdot15\cdot18+4\cdot20\cdot24+5\cdot25\cdot30}{1\cdot3\cdo...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

=\(\frac{30\left(1+8+27+64+125\right)}{5\left(3+24+81+64+375\right)}\)

\(\frac{30.225}{5.574}\)

=\(\frac{6750}{2870}\)

=\(\frac{675}{287}\)

K mình với!!!!

27 tháng 4 2017

A=1.5.(3.2)+2.10.(6.2)+3.15.(9.2)+4.20.(12.2)+5.25.(15.2)

1.3.5+2.6.10+3.9.15+4.12.20+5.15.25

A=1.5.3+2.10.6+3.15.9+4.20.12+5.25.15(2.2.2.2.2)

1.3.5+2.6.10+3.9.15+4.12.20+5.15.25

A=2.2.2.2.2

A=32

27 tháng 4 2017

\(\frac{1\cdot3\cdot5\cdot2+2\cdot10\cdot6\cdot2+3\cdot15\cdot9\cdot2+4\cdot20\cdot12\cdot2+5\cdot25\cdot15\cdot2}{1\cdot3\cdot5+2\cdot10\cdot6+3\cdot15\cdot9+4\cdot20\cdot12+5\cdot25\cdot15 }\)

\(2\cdot2\cdot2\cdot2\cdot2=2^5\)

\(=32\)

11 tháng 5 2017

\(a=\frac{6.2.3.4+6.3.4.5+6.4.5.6+...+6.98.99.100}{2.3.4+3.4.5+4.5.6+...+98.99.100}=6\)

thay vào p(x) suy ra a không là nghiệm của đa thức nhé bạn

11 tháng 5 2017

a = 6.2.3.4+6.3.4.5+6.4.5.6 +...+6.98.99.100 / 2.3.4+3.4.5+4.5.6+...+98.99.100

  = 6 > 0

Ta thay vào P(x) 

Suy ra a ko là nghiệm của đa thức

26 tháng 10 2019

\(a,\frac{20^{12}\cdot6^{14}}{8^{13}\cdot15^{12}}\)

\(=\frac{5^{12}\cdot2^{24}\cdot2^{14}\cdot3^{14}}{2^{39}\cdot3^{12}\cdot5^{12}}\)

\(=\frac{5^{12}\cdot2^{38}\cdot3^{14}}{2^{39}\cdot3^{12}\cdot5^{12}}=\frac{3^2}{2}=\frac{9}{2}\)

\(b,\frac{45^{12}\cdot10^{14}}{18^{13}\cdot25^{12}}\)

\(=\frac{5^{12}\cdot3^{24}\cdot2^{14}\cdot5^{14}}{2^{13}\cdot3^{26}\cdot5^{24}}\)

\(=\frac{5^{26}\cdot3^{24}\cdot2^{14}}{2^{13}\cdot3^{26}\cdot5^{24}}=\frac{5^2\cdot2}{3^2}=\frac{50}{9}\)

\(c,\frac{18^{12}\cdot27^8}{6^8\cdot3^{40}}\)

\(=\frac{2^{12}\cdot3^{24}\cdot3^{24}}{2^8\cdot3^8\cdot3^{40}}\)

\(=\frac{2^{12}\cdot3^{48}}{2^8\cdot3^{48}}=2^4=16\)

\(d,\frac{12^{14}\cdot9^{18}}{8^9\cdot27^{17}}\)

\(=\frac{3^{14}\cdot2^{28}\cdot3^{36}}{2^{27}\cdot3^{51}}\)

\(=\frac{3^{50}\cdot2^{28}}{2^{27}\cdot3^{51}}=\frac{2}{3}\)

làm hơi tắt nên chịu khó hiểu

\(\frac{7.2^{32}.3^8.5^4-2^9.3^9.2^8.5^4}{2^{10}.3^{10}.2^5.5^5-7.3^9.4^8.5^4}=\frac{7.2^{32}.3^8.5^4-2^{17}.3^9.5^4}{2^{15}.3^{10}.5^5-7.3^9.2^{16}.5^4}\)

\(\frac{2^{17}.3^8.5^4\left(2^5.7-1\right)}{2^{15}.3^9.5^4\left(3.5-7.2\right)}=\frac{2^{17}.3^8.5^4\left(32.7-1\right)}{2^{15}.3^9.5^4\left(15-14\right)}\)

1 tháng 7 2018

\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}=\frac{-2}{6}=-\frac{1}{3}\)

1 tháng 7 2018

Ta có:\

\(A=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)

\(A=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}\)

\(A=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)

\(A=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)

\(A=-\frac{2}{6}=-\frac{1}{3}\)

1 tháng 9 2015

\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

=>\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)

=>\(S=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)

=>\(S=\frac{1}{2}.\left(1-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{10}\right)\)

=>\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

=>\(S=\frac{4}{9}-\frac{1}{5}\)

=>\(S=\frac{11}{45}\)

1 tháng 9 2015

lê chí cường dung 

29 tháng 6 2017

a) \(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)

\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{19}-\frac{1}{19}+\frac{1}{23}-\frac{1}{23}+\frac{1}{27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)\)

\(=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}\)

\(=\frac{1}{2}-\frac{2}{27}\)

\(=\frac{23}{54}\)

b) \(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)

\(=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)

\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+\frac{1}{20}-...-\frac{1}{95}-\frac{1}{100}\right)\)

\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)\)

\(=1-\frac{1}{5}.\frac{19}{100}\)

\(=1-\frac{19}{500}\)

\(=\frac{481}{500}\)