Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{x+1}{49}+\frac{x+2}{48}+\frac{x+3}{47}+\frac{x+4}{46}+\frac{x+5}{45}=-5\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{49}+1\right)+\left(\frac{x+2}{48}+1\right)+\left(\frac{x+3}{47}+1\right)+\left(\frac{x+4}{46}+1\right)+\left(\frac{x+5}{45}+1\right)=-5+5\)
\(\Leftrightarrow\)\(\frac{x+50}{49}+\frac{x+50}{48}+\frac{x+50}{47}+\frac{x+50}{46}+\frac{x+50}{45}=0\)
\(\Leftrightarrow\)\(\left(x+50\right)\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\right)=0\)
Vì \(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\ne0\)
Nên \(x+50=0\)
\(\Rightarrow\)\(x=-50\)
Vậy \(x=-50\)
Chúc bạn học tốt ~
\(\frac{x+1}{49}+1+\frac{x+2}{48}+1+\frac{x+3}{47}+1+\frac{x+4}{46}+1+\frac{x+5}{45}+1=0\)
\(\Leftrightarrow\frac{x+50}{49}+\frac{x+50}{48}+...+\frac{x+50}{45}=0\)
\(\Leftrightarrow\left(x+50\right)\left(\frac{1}{49}+\frac{1}{48}+...+\frac{1}{45}\right)=0\)
Vì 1/49+1/48+...+1/45 khác 0
Nên x+50=0
do đó x=-50
Ta có :
\(\frac{x-1}{49}+\frac{x-2}{48}+\frac{x-3}{47}+\frac{x-4}{46}+\frac{x-5}{45}=5\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{49}-1\right)+\left(\frac{x-2}{48}-1\right)+\left(\frac{x-3}{47}-1\right)+\left(\frac{x-4}{46}-1\right)+\left(\frac{x-5}{45}-1\right)=5-5\)
\(\Leftrightarrow\)\(\frac{x-1-49}{49}+\frac{x-2-48}{48}+\frac{x-3-47}{47}+\frac{x-4-46}{46}+\frac{x-5-45}{45}=0\)
\(\Leftrightarrow\)\(\frac{x-50}{49}+\frac{x-50}{48}+\frac{x-50}{47}+\frac{x-50}{46}+\frac{x-50}{45}=0\)
\(\Leftrightarrow\)\(\left(x-50\right)\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\right)=0\)
Vì \(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\ne0\) ( vì nó lớn hơn 0 )
Nên \(x-50=0\)
\(\Rightarrow\)\(x=50\)
Vậy \(x=50\)
Chúc bạn học tốt ~
Câu hỏi của Lê Thị Minh Trang - Toán lớp 6 - Học toán với OnlineMath
Xem bài 1 nhé !
Bài 1:
Xét vế phải :
\(P=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}\)\(-1=2\)\(\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)
\(=2\left(\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{25}+\frac{1}{26}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)
Đẳng thức được chứng tỏ là đúng
Bài 2 :
Đặt \(A'=\frac{3}{4}.\frac{4}{5}.\frac{7}{8}...\frac{4999}{5000}\)
Rõ ràng \(A< A'\)
SUY RA \(A^2< AA'=\frac{2}{50000}=\frac{1}{2500}=\left(\frac{1}{50}\right)^2\)
Nên \(A< \frac{1}{50}=0,02\)
Chúc bạn học tốt ( -_- )
a)Ta có:A:B=\(\left(\frac{1}{4}.\frac{3}{6}.\frac{5}{8}....\frac{43}{46}.\frac{45}{48}\right):\left(\frac{2}{5}.\frac{4}{7}.\frac{6}{9}....\frac{44}{47}.\frac{46}{49}\right)=\frac{\left(1.3.5...45\right).\left(2.4.6...46\right)}{\left(4.6.8...48\right)\left(5.7.9...49\right)}=\frac{3.2}{47.48.49}
A:B thì phải nhân nghịch đảo chứ ?