Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{3-2}{3}+\frac{15-2}{15}+\frac{35-2}{35}+\frac{63-2}{63}+\frac{99-2}{99}+\frac{143-2}{143}+\frac{195-2}{195}\)
\(A=\left(1-\frac{2}{3}\right)+\left(1-\frac{2}{15}\right)+\left(1-\frac{2}{35}\right)+\left(1-\frac{2}{63}\right)+\left(1-\frac{2}{99}\right)+\left(1-\frac{2}{143}\right)+\left(1-\frac{2}{195}\right)\)
\(A=7-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}+\frac{2}{195}\right)\)
\(A=7-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)
\(A=7-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(A=7-\left(1-\frac{1}{15}\right)=7-1+\frac{1}{15}=6\frac{1}{15}\)không là số nguyên
\(A=1-\frac{2}{3}+1-\frac{2}{15}+1-\frac{2}{35}+1-\frac{2}{63}+1-\frac{2}{99}+1-\frac{2}{143}\)
\(=1+1+1+1+1+1-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}-\frac{2}{63}-\frac{2}{99}-\frac{2}{143}\)
\(=6-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)\)
\(=6-\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=6-\left(1-\frac{1}{13}\right)\)
\(=6-1+\frac{1}{13}\)
\(=5+\frac{1}{13}\)
\(=\frac{65}{13}+\frac{1}{13}\)
\(=\frac{66}{13}\)
\(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}=0\)
\(\Rightarrow3x-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)=0\)
\(\Rightarrow3x-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)=0\)
\(\Rightarrow3x-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=0\)
\(\Rightarrow3x-\left(1-\frac{1}{99}\right)=0\)
\(\Rightarrow3x-\frac{98}{99}=0\)
\(\Rightarrow3x=0+\frac{98}{99}\)
\(\Rightarrow3x=\frac{98}{99}\)
\(\Rightarrow x=\frac{98}{99}:3\)
\(\Rightarrow x=\frac{98}{297}\)
\(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}=0\)
\(2\left(3x-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}\right)=2.0\)
\(6x-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}-\frac{2}{63}-\frac{2}{99}=0\)
\(6x-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)=0\)
\(6x-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=0\)
\(6x-\left(1-\frac{1}{11}\right)=0\)
\(6x-\frac{10}{11}=0\)
\(6x=\frac{10}{11}\)
\(x=\frac{5}{33}\)
A=2/3*5 + 2/5*7 + 2/7*9 + 2/9*11
A=1/3 - 1/5 +1/5 -1/7 + 1/7 - 1/9 + 1/9 - 1/11
A=1/3 - 1/11
A=8/33
Bài 1c)
\(\frac{1}{3}+x=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{110}\)
\(\frac{1}{3}+x=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{10.11}\)
\(\frac{1}{3}+x=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)
\(\frac{1}{3}+x=\frac{1}{3}-\frac{1}{11}=\frac{11}{33}-\frac{3}{33}=\frac{8}{33}\)
\(x=\frac{8}{33}-\frac{1}{3}=\frac{8}{33}-\frac{11}{33}=\frac{-3}{33}=\frac{-1}{11}\)
a, \(139\frac{5}{7}:\frac{2}{3}−138\frac{2}{7}:\sqrt{\frac{4}{9}} \)
= \(139\frac{5}{7}:\frac{2}{3}−138\frac{2}{7}:\frac{2}{3}\)
= \((139\frac{5}{7}−138\frac{2}{7}):\frac{2}{3}\)
= \(1\frac{3}{7}:\frac{2}{3}\)
= \(2\frac{1}{7}\)
b, \((\frac{-5}{11}:\frac{13}{18}-\frac{5}{11}:\frac{13}{5})+\frac{-1}{33} \)
= \((\frac{5}{11}.\frac{-18}{13}-\frac{5}{11}.\frac{5}{13})+\frac{-1}{33}\)
= \([\frac{5}{11}.(\frac{-18}{13}-\frac{5}{13})]+\frac{-1}{33}\)
= \((\frac{5}{11}.\frac{-23}{13})+\frac{-1}{33}\)
= \(\frac{-155}{143}+\frac{-1}{33}\)
= \(\frac{-358}{429} \)
c, \(∣97\frac{2}{3}-125\frac{3}{5}∣+97\frac{2}{3}-125\frac{3}{5} \)
= \(∣\frac{-419}{15}∣+97\frac{2}{3}-125\frac{3}{5}\)
= \(\frac{419}{15}+97\frac{2}{3}-125\frac{3}{5}\)
= \(0\)
Tick cho mình nha!!!
Chúc bạn học tốt.
\(D=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
Làm tắt nha :
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(D=\frac{1}{2}.\frac{98}{99}-\frac{1}{2}.\frac{98}{100}\)
\(D=\frac{1}{2}\left(\frac{98}{99}-\frac{98}{100}\right)\)
Tự tính nốt nha
A = \(\frac{1}{3}+\frac{13}{35}+\frac{33}{35}+\frac{61}{63}+\frac{97}{99}+\frac{141}{143}\)
\(=\left(1-\frac{2}{3}\right)+\left(1-\frac{2}{15}\right)+\left(1-\frac{2}{35}\right)+\left(1-\frac{2}{63}\right)+\left(1-\frac{2}{99}\right)+\left(1-\frac{2}{143}\right)\)
\(=\left(1+1+1+1+1+1\right)-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)\)
\(=6-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=6-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=6-\left(1-\frac{1}{13}\right)\)
\(=6-1+\frac{1}{13}\)
\(=5+\frac{1}{13}\)
\(=\frac{66}{13}\)
\(\text{Vậy }A=\frac{66}{13}\)