\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\)

Chứng minh A<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(\Rightarrow A< 1-\frac{1}{9}=\frac{8}{9}\)(1)

Lại có: \(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(\Rightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(A>\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(2)

Từ (1) và (2), suy ra: \(\frac{2}{5}< A< \frac{8}{9}\)

18 tháng 7 2019

                                                                                   Bài giải

                                   Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)     ;    \(\frac{1}{3^2}< \frac{1}{2\cdot3}\)        ; ..... ;             \(\frac{1}{9^2}< \frac{1}{8\cdot9}\)

\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{8\cdot9}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}=\frac{8}{9}\)        \(^{\left(1\right)}\)

                        Ta có : \(\frac{1}{2^2}>\frac{1}{2\cdot3}\)          ;         \(\frac{1}{3^2}>\frac{1}{3\cdot4}\)        ; ..... ;               \(\frac{1}{9^2}>\frac{1}{9\cdot10}\)

\(\Rightarrow A=\text{ }\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)         \(^{\left(2\right)}\)       

Từ \(^{\left(1\right)}\) và \(^2\) 

       \(\Rightarrow\text{ }\frac{2}{5}< A< \frac{8}{9}\)      \(\left(ĐPCM\right)\)

18 tháng 7 2019

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

              \(=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{8\times9}\)  

              \(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{9-8}{8\times9}\)

              \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

              \(=1-\frac{1}{9}=\frac{8}{9}\)

\(\Rightarrow A< \frac{8}{9}\left(1\right)\)

Ta có:    \(A=\frac{1}{2\times2}+\frac{1}{3\times3}+\frac{1}{4\times4}+...+\frac{1}{9\times9}>\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\)

                 \(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+...+\frac{10-9}{9\times10}\)

                 \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

                 \(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

\(\Rightarrow A>\frac{2}{5}\left(2\right)\)

Từ (1) và (2) --> \(\frac{2}{5}< A< \frac{8}{9}\left(đpcm\right)\)

Các bạn nhớ k đúng mình nha (nếu đúng)

20 tháng 1 2017

tao biết làm câu a rồi