![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A= \(\left(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-b}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)
A = \(\left(\frac{\sqrt{b}}{\sqrt{a}.\sqrt{a}-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab}-\sqrt{b}.\sqrt{b}}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)
A = \(\left(\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)
A = \(\left(\frac{b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right)\left(a\sqrt{b}-b\sqrt{a}\right)\)
A = \(\left(\frac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(\sqrt{a}.\sqrt{a}.\sqrt{b}-\sqrt{b}.\sqrt{b}\sqrt{a}\right)\)
A = \(\left(\frac{b-a}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\right).\left(\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\right)\)
A = b-a
B = \(\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}}{a-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-1}\)
B = \(\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{a-1}-\frac{\sqrt{a}\left(a+\sqrt{a}\right)}{a^2-a}\right).\frac{a-1}{\sqrt{a}+1}\)
B = \(\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{a-1}-\frac{\sqrt{a}.\sqrt{a}\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)
\(B=\left(\frac{a\sqrt{a}\left(\sqrt{a}+1\right)}{a\left(a-1\right)}-\frac{a\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)
B= \(\left(\frac{a\sqrt{a}\left(\sqrt{a}+1\right)-a\left(\sqrt{a}+1\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)
B= \(\left(\frac{\left(\sqrt{a}+1\right)\left(a\sqrt{a}-a\right)}{a\left(a-1\right)}\right).\frac{a-1}{\sqrt{a}+1}\)
B = \(\frac{\left(\sqrt{a}+1\right)a\left(\sqrt{a}-1\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)
\(B=\frac{a\left(\sqrt{a}^2-1^2\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)
\(B=\frac{a\left(a-1\right)}{a\left(a-1\right)}.\frac{a-1}{\sqrt{a}+1}\)
B = \(\frac{a-1}{\sqrt{a}+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=\left(-\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=-2+2\sqrt{5}-\sqrt{5}\)
\(=-2+\sqrt{5}\)
b) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right)\div\frac{1}{8}\)
\(=\left(\frac{\sqrt{2}}{4}-\frac{3\sqrt{2}}{2}+8\sqrt{2}\right)\cdot8\)
\(=\frac{27\sqrt{2}}{4}\cdot8\)
\(=54\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{2\sqrt{5}+b\sqrt{a}}{\sqrt{ab}}-\frac{1}{\sqrt{a}-\sqrt{b}}\)
\(=\frac{2\sqrt{5ab}+ab\sqrt{b}}{ab}-\frac{\sqrt{a}+\sqrt{b}}{a-b}\)
\(=\frac{\left(2\sqrt{5ab}+ab\sqrt{b}\right)\left(a-b\right)-\left(\sqrt{a}+\sqrt{b}\right)ab}{ab\left(a-b\right)}\)
\(=\frac{2a\sqrt{5ab}-2b\sqrt{5ab}+a^2b\sqrt{b}-ab^2\sqrt{b}-ab\sqrt{a}-ab\sqrt{b}}{ab\left(a-b\right)}\)
b) \(\left(1+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\cdot\left(\frac{1+1+\sqrt{a}}{1-a^2}\right)^2\)
\(=\left(1+\frac{\left(\sqrt{a}-1\right)\sqrt{a}}{\sqrt{a}-1}\right)\cdot\left(\frac{2+\sqrt{a}}{\left(1-a\right)\left(1+a\right)}\right)^2\)
\(=\left(1+\sqrt{a}\right)\left[\frac{2+\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\left(1+a\right)}\right]^2\)
\(=\frac{4+4\sqrt{a}+a}{\left(1-\sqrt{a}\right)^2\left(1+\sqrt{a}\right)\left(1+a\right)^2}\) \(a\ge0;a\ne\pm1\)
Bổ sung đk của phần a: \(a,b>0;a\ne b\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2/
a/ \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\frac{1}{\sqrt{a}}}=2\), dấu "=" khi \(a=1\)
b/ \(a+b+\frac{1}{2}=a+\frac{1}{4}+b+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}+2\sqrt{b.\frac{1}{4}}=\sqrt{a}+\sqrt{b}\)
Dấu "=" khi \(a=b=\frac{1}{4}\)
c/ Có lẽ bạn viết đề nhầm, nếu đề đúng thế này thì mình ko biết làm
Còn đề như vậy: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\) thì làm như sau:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) ; \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\); \(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)
Cộng vế với vế ta được:
\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{xz}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)
Dấu "=" khi \(x=y=z\)
d/ \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\)
\(=\frac{7+4\sqrt{3}}{3-4}-\frac{7-4\sqrt{3}}{3-4}=-7-4\sqrt{3}+7-4\sqrt{3}=-8\sqrt{3}\)
e/ \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{\left(a-b\right)\left(a+b-\sqrt{ab}\right)}{\sqrt{ab}}\)
\(=\frac{a^2-b^2}{\sqrt{ab}}-\left(a-b\right)\) (bạn chép đề sai)