K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2020

\(A=\frac{12n+1}{2n+3}\)

Để A là phân số => \(2x+3\ne0\)<=> \(x\ne-\frac{3}{2}\)

\(A=\frac{12n+1}{2n+3}=\frac{6\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2n+3}\)

Để A là số nguyên => \(\frac{17}{2n+3}\)là số nguyên

<=> \(17⋮2n+3\)<=> \(2n+3\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)

2n+31-117-17
n-1-27-10
12 tháng 4 2019

a,         De A la phan so thi 2-n # 0 suy ra n # 2

Vay n # 2 thi A la phan so 

b,          vi n la so nguyen nen suy ra 2-n la so nguyen 

suy ra 1 chia het cho 2 - n 

suy ra 2-n thuoc uoc cua (1) 

suy ra 2 - n thuoc { 1 , -1 }

suy ra n thuoc { 1 , 3 } 

Vay n thuoc { 1 , 3 }

* Chu y :

Cac tu ( thuoc , uoc , suy ra , chia het ) khi ban trinh bay thi ban viet ki hieu cho minh nhe

17 tháng 4 2019

\( Để A=\frac{n+10}{2n-8}\)CÓ GIÁ TRỊ NGUYÊN

\(\Rightarrow n+10⋮2n-8\)

\(\Rightarrow2\left(n+10\right)⋮2\left(n-4\right)\)

\(\Rightarrow n+10⋮n-4\)

\(\Rightarrow\left(n-4\right)+14⋮n-4\)

\(\Rightarrow n-4\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)

\(\Rightarrow n\in\left\{-10;-3;2;3;5;6;11;18\right\}\)

Vì n là số tự nhiên \(\Rightarrow n\in\left\{2;3;5;6;11;18\right\}\)

14 tháng 2 2016

a, Để A là phân số thì n + 1 khác 0

=> n khác -1

b, Để A là số nguyên thì 5 chia hết cho n + 1

=> n + 1 thuộc {1; -1; 5; -5}

=> n thuộc {0; -2; 4; -6}

Vậy...

14 tháng 2 2016

a, n khác 1

b,n{-6;-2;0;4}

18 tháng 3 2021
Hùng đẹp trai nhất 😈😈😈
18 tháng 3 2021

để n-3/7 có giá trị nguyên thì n-3 chia hết cho 7

n+3 thuộc bội 7=7k=> n=7k+4

4 tháng 5 2016

n :5 không dư 1;n khác 2

4 tháng 5 2016

a) n khác 1

b) n-1(5) = -1;1;-5;5

n= 0; 2; -4;6

ai cung k hieu chỉ vai bạn gioi hieu moi thay

dc hay

6 tháng 2 2022

a) Ta có: \(A=\dfrac{4}{n-1}\left(n\in Z\right)\)

Để biểu thức \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)

Vậy \(n\ne1\) thì biểu thức \(A\) là phân số.

b) Ta có: \(\dfrac{4}{n-1}\left(n\in Z\right)\)

Để biểu thức \(A\) là số nguyên thì \(n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)

Vậy \(n\in\left\{2;0;3;-1;5;-3\right\}\) thì biểu thức \(A\) là số nguyên.

a: Để A là phân số thì n-1<>0

hay n<>1

b: Để A là số nguyên thì \(n-1\inƯ\left(4\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)