Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)
\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}...\frac{100.100}{100.101}\)
\(=\frac{1.1.2.2.3.3...100.100}{1.2.2.3.3.4...100.101}\)
\(=\frac{\left(1.2.3...100\right).\left(1.2.3...100\right)}{\left(1.2.3....100\right).\left(2.3.4...101\right)}\)
\(=\frac{1.1}{1.101}\)
\(=\frac{1}{101}\)
\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}.....\frac{100^2}{100\cdot101}\)
\(=\frac{1.1}{1\cdot2}\cdot\frac{2.2}{2.3}\cdot\frac{3.3}{3.4}.....\frac{100.100}{100.101}\)
\(=\frac{\left(1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot\cdot100\right)\left(1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot101\right)}\)
\(=\frac{1}{101}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.......\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1.2.3.....100}{1.2.3....100}.\frac{1.2.3....100}{2.3.4...101}\)
\(=1.\frac{1}{101}=\frac{1}{101}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}\)
\(=\frac{1.2.3...99.100}{2.3.4...100.101}\)
\(=\frac{1}{101}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.............\frac{100^2}{100.101}\)
\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}..........\frac{100.100}{100.101}\)
\(=\frac{\left(1.2.3............100\right).\left(1.2.3..........100\right)}{\left(1.2.3..........100\right)\left(2.3.4...........101\right)}\)
\(=\frac{1}{101}\)
=2(1/1.2+1/2.3+...+1/100.101)
=2(1/1-1/2+1/2-...+1/100-1/101)
=2(1-1/101)
=2.100/101
=200/101
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)
\(=\frac{1.1.2.2.3.3...100.100}{1.2.2.3.3.4.4...100.101}\)
\(=\frac{\left(1.2.3...100\right)\left(1.2.3...100\right)}{\left(1.2.3..100\right)\left(2.3.4...101\right)}=\frac{1}{101}\)
\(\frac{1.1}{1.2}.\frac{2.2}{2.3}\frac{3.3}{3.4}...\frac{100.100}{100.101}\)
\(=\frac{\left(1.2.3...100\right).\left(1.2.3...100\right)}{\left(1.2.3...100\right).\left(2.3...101\right)}\)
\(=\frac{1}{1.101}\)
\(=\frac{1}{101}\)
k cho mk nha