Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(5x-7\ge0\) \(\Leftrightarrow\)\(x\ge\frac{7}{5}\)
b) ĐKXĐ: \(2x^2+x\ge0\)\(\Leftrightarrow\) \(x\left(2x+1\right)\ge0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x\ge0\\x\le-\frac{1}{2}\end{cases}}\)
c) ĐKXĐ: \(4-7x\ge0\)\(\Leftrightarrow\)\(x\le\frac{4}{7}\)
d) ĐKXĐ: \(x^3+x\ge0\) \(\Leftrightarrow\)\(x\left(x^2+1\right)\ge0\)\(\Leftrightarrow\)\(x\ge0\)
e) ĐKXĐ: \(\frac{x-5}{2x+1}\ge0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x\ge5\\x< -\frac{1}{2}\end{cases}}\)
f) ĐKXĐ: \(\frac{3-2x}{3x-2}\ge0\) \(\Leftrightarrow\)\(\frac{2}{3}< x\le\frac{3}{2}\)
bài 2 : ĐKXĐ : \(x\ge0\) và \(x\ne1\)
Rút gọn :\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{5\sqrt{x}-1}{x-1}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1-5\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\frac{-1}{\sqrt{x}+1}\)
\(a,\)\(\frac{1}{1-\sqrt{x^2-3}}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}x^2-3\ge0\\x^2-3\ne1\end{cases}}\).
\(x^2-3\ne1\)\(\Rightarrow x^2\ne4\)\(\Rightarrow x\ne\pm2\)
\(x^2-3\ge0\)\(\Rightarrow\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\ge0\)
Chia trường hợp ra làm nốt nhé
....
\(b,\)\(\frac{x-1}{2-\sqrt{3x+1}}\)
\(đkxđ\Leftrightarrow\orbr{\begin{cases}3x+1\ge0\\\sqrt{3x+1}\ne2\end{cases}}\)
\(3x+1\ge0\)\(\Rightarrow3x\ge-1\)
\(\Rightarrow x\ge\frac{-1}{3}\)
\(\sqrt{3x+1}\ne2\)\(\Rightarrow|3x+1|\ne4\)\(\Rightarrow\hept{\begin{cases}3x-1\ne4\\3x-1\ne-4\end{cases}\Rightarrow\hept{\begin{cases}3x\ne5\\3x\ne-3\end{cases}\Rightarrow}\hept{\begin{cases}x\ne\frac{5}{3}\\x\ne-1\end{cases}}}\)
\(\Rightarrow x\ge-\frac{1}{3}\)và \(x\ne\frac{5}{3}\)
\(a,\)\(\sqrt{\frac{1}{\left(x-3\right)^2}}\)
\(đk:\)\(\frac{1}{\left(x-3\right)^3}\ne0\)\(\Rightarrow\left(x-3\right)^3\ne0\)\(\Leftrightarrow x\ne3\)
Và \(\frac{1}{\left(x-3\right)}>0\Rightarrow x-3>0\)\(\Rightarrow x>3\)
Vậy để căn thức xác định thì x > 3
\(\sqrt{8x-x^2-15}\)
\(=\sqrt{-\left(x^2-8x+15\right)}\)
\(=\sqrt{-\left(x^2-8x+16-1\right)}\)
\(=\sqrt{-\left[\left(x^2-8x+16\right)-1\right]}\)
\(=\sqrt{-\left(x-4\right)^2+1}\)
\(đk:\)\(-\left(x-4\right)^2+1\ge0\)
\(\Rightarrow\left(x-4\right)^2\le1\)
\(\Rightarrow\orbr{\begin{cases}\left(x-4\right)^2=1\\\left(x-4\right)^2=0\end{cases}}\)
\(\left(x-4\right)^2=1\Rightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)
\(\left(x-4\right)^2=0\Rightarrow x=4\)
Vậy căn thức xác định \(\Leftrightarrow x=\left\{3;4;5\right\}\)
\(b,\sqrt{\frac{2x-1}{x+3}}\)
\(Đk:\)\(x+3\ne0\Rightarrow x\ne-3\)
Và \(\frac{2x-1}{x+3}\ge0\)
Khi \(\frac{2x-1}{x+3}=0\Rightarrow2x-1=0\)
\(\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Khi \(\frac{2x-1}{x+3}>0\)\(\Rightarrow\orbr{\begin{cases}2x-1>0;x+3>0\\2x-1< 0;x+3< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2};x>-3\\x< \frac{1}{2};x< -3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x< -3\end{cases}}\)
Vậy căn thức xác định khi \(x\ge\frac{1}{2};x< -3\)
\(a,\)\(\frac{2}{\sqrt{x^2-x+1}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x^2-x+1\ge0\\x^2-x+1\ne0\end{cases}\Rightarrow x^2-x+1>0}\)
Mà \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với \(\forall x\)
\(\Rightarrow\)Biểu thức luôn được xác định với mọi x
A) ĐKXĐ : \(x\ge0\) và \(x\ne4\)
Rút gọn :\(A=\frac{2}{2+\sqrt{x}}+\frac{1}{2-\sqrt{x}}+\frac{4\sqrt{x}}{4-x}\)
\(A=\frac{2\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{2+\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{4\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(A=\frac{4-2\sqrt{x}+2+\sqrt{x}+4\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(A=\frac{6+3\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(A=\frac{3\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
\(A=\frac{3}{2-\sqrt{x}}\)
b) thay \(x=7+4\sqrt{3}\) vào A
ta được :\(A=\frac{3}{2-\sqrt{7+4\sqrt{3}}}=\frac{3}{2-2+\sqrt{3}}=\frac{3}{\sqrt{3}}\)
vậy vói \(x=7+4\sqrt{3}\) thì \(A=\frac{3}{\sqrt{3}}\)
c)với\(x\ge0\) và \(x\ne4\)
Để \(A=-\frac{3}{7}\Leftrightarrow\frac{3}{2-\sqrt{x}}=-\frac{3}{7}\)
\(\Leftrightarrow3.7=-3\left(2-\sqrt{x}\right)\)
\(\Leftrightarrow21=-6+3\sqrt{x}\)
\(\Leftrightarrow21+6=3\sqrt{x}\)
\(\Leftrightarrow27=3\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=9\)
\(\Leftrightarrow x=81\)
Vậy để\(A=-\frac{3}{7}\Leftrightarrow x=81\)
\(\sqrt{x-3}-2\ne0\)
\(\sqrt{x-3}\ne2\)
\(x\ne7\left(1\right)\)
\(\sqrt{x-3}\ge0\)
\(x\ge3\left(2\right)\)
\(\left(1\right);\left(2\right)< =>x\ge3;x\ne7\)
x>=3; x khác 7