K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

\(\left(a+b+c\right)\ge3\sqrt[3]{abc}\)

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)

Min=9

dấu = xảy ra khi a=b=c=1

12 tháng 1 2018

???????????????????????????

3 tháng 1 2020

Áp dụng AM - GM

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow P\ge9\)

(Dấu "="\(\Leftrightarrow a=b=c\))

3 tháng 1 2020

Phá ngoặc ra ông giáo ạ:3

\(P=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

\(\ge3+3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\) ( hồn nhiên cô si )

\(\ge3+3\sqrt[3]{\frac{8abc}{abc}}=9\) ( hồn nhiên cô si tiếp )

Dấu "=" xảy ra tại a=b=c

Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)

Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

8 tháng 11 2019

Áp dụng bđt AM-GM ta có:

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}\end{cases}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}\)

\(\Rightarrow P\ge9\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy ..

ko biết đúng ko

8 tháng 11 2019

Câu hỏi của •Čáøツ - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo 3 cách nhé!

1 tháng 12 2019

Dự đoán điểm rơi \(a=b=c=\frac{1}{3}\)

Khi đó:

\(S=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(=\left(a+b+c+\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)+8\left(\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)\)

\(\ge6\sqrt[6]{a\cdot b\cdot c\cdot\frac{1}{9a}\cdot\frac{1}{9b}\cdot\frac{1}{9c}}+24\sqrt[3]{\frac{1}{9a}\cdot\frac{1}{9b}\cdot\frac{1}{9c}}\)

\(=2+\frac{8}{3}\cdot\frac{1}{\sqrt[3]{abc}}\ge2+\frac{8}{3}\cdot\frac{1}{\frac{a+b+c}{3}}\ge10\)

2 tháng 12 2019

Mù mắt với AM-GM cho 10 số:v

\(S=\left(a+b+c\right)+9\left(\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)\)\(\ge10\sqrt[10]{\left(a+b+c\right)\left(\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)^9}\)\(\ge10\sqrt[10]{\left(3\sqrt[3]{abc}\right)\left[3\sqrt[3]{\frac{1}{9^3abc}}\right]^9}=10\sqrt[10]{\left(3\sqrt[3]{abc}\right).\left[3^9\left(\frac{1}{9^3abc}\right)^3\right]}\)

\(=10\sqrt[10]{3^{10}.\frac{\sqrt[3]{abc}}{\left(3^6abc\right)^3}}=10\sqrt[10]{\frac{1}{3^8\sqrt[3]{\left(abc\right)^8}}}\ge10\sqrt[10]{\frac{1}{3^8\sqrt[3]{\left[\frac{\left(a+b+c\right)^3}{27}\right]^8}}}\ge10\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Vậy.....

6 tháng 3 2017

Kiểm tra mà bạn vẫn có thời gian đưa câu hỏi ư! Bái phục mà thi j vậy bn?

4 tháng 11 2019

\(P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Mặt khác \(\frac{x}{y}+\frac{y}{x}\ge2\forall xy>0\)

\(\Rightarrow\frac{P}{3+2+2+2}=9\)

Vậy Pmin=9 khi a=b=c

4 tháng 11 2019

Cô si thẳng luôn cho nó chất:v

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)