\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2022

\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\left(dk:x\ne0,\pm1\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

Vậy \(A=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

22 tháng 9 2018

điều kiện xác định : \(x\ge0;x\ne1\)

a) ta có : \(A=\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{1}{1+\sqrt{x}}\right):\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{1+\sqrt{x}}\right)+\dfrac{1}{1-\sqrt{x}}\)

\(\Leftrightarrow A=\left(\dfrac{2}{1-x}\right):\left(\dfrac{2\sqrt{x}}{1-x}\right)+\dfrac{1}{1-\sqrt{x}}\)

\(\Leftrightarrow A=\left(\dfrac{2}{1-x}\right)\left(\dfrac{1-x}{2\sqrt{x}}\right)+\dfrac{1}{1-\sqrt{x}}=\dfrac{1}{\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\)

ta có : \(x=7+4\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{7+4\sqrt{3}}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)

\(\Rightarrow A=\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{1-2-\sqrt{3}}=\dfrac{5-3\sqrt{3}}{2}\)

b) áp dụng cauchuy-schwarz dạng engel ta có :

\(A=\dfrac{1}{\sqrt{x}}+\dfrac{1}{1-\sqrt{x}}\ge4\)

dấu "=" xảy ra khi : \(\sqrt{x}=1-\sqrt{x}\Leftrightarrow2\sqrt{x}=1\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)

vậy ....................................................................................................................

21 tháng 9 2018

Mysterious Person giup e

10 tháng 9 2017

1. \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)

\(=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2\)

\(=1+2\sqrt{2}+2-3\)

\(=2\sqrt{2}\)

10 tháng 9 2017

3. \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)(1)

ĐKXĐ \(x>0,x\ne1\)

pt (1) <=> \(\left(\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\right)\cdot\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)

\(\Leftrightarrow\dfrac{\sqrt{x}\cdot2}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\)

b) Để \(\sqrt{A}>A\Leftrightarrow\sqrt{\dfrac{2}{\sqrt{x}-1}}>\dfrac{2}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}>\dfrac{4}{x-2\sqrt{x}+1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}-\dfrac{4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\cdot\left(\sqrt{x}-1\right)-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-2-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-6}{x-2\sqrt{x}+1}>0\)

\(2\sqrt{2}-6< 0\Rightarrow x-2\sqrt{x}+1< 0\)

\(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\ge0\forall x\)

Vậy không có giá trị nào của x thỏa mãn \(\sqrt{A}>A\)

(P/s Đề câu b bị sai hay sao vậy, chả có số nào mà \(\sqrt{A}>A\) cả, check lại đề giùm với nhé)

30 tháng 8 2017

a)

\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)

b)

\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)

c)

\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

d)

\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

Điều kiện để $Q$ có nghĩa.

\(x>0; x\neq 1\)

\(Q=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(=\frac{1}{4}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2.\frac{(\sqrt{x}+1)^2-(\sqrt{x}-1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}\)

\(=\frac{1}{4}\left(\frac{x-1}{\sqrt{x}}\right)^2.\frac{x+1+2\sqrt{x}-(x-2\sqrt{x}+1)}{x-1}\)

\(=\frac{1}{4}.\frac{(x-1)^2}{x}.\frac{4\sqrt{x}}{x-1}\)

\(=\frac{x-1}{\sqrt{x}}\)

b)

\(Q=3\sqrt{x}-3\)

\(\Leftrightarrow \frac{x-1}{\sqrt{x}}=3(\sqrt{x}-1)\)

\(\Leftrightarrow \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}=3(\sqrt{x}-1)\)

\(\Leftrightarrow (\sqrt{x}-1)(\frac{\sqrt{x}+1}{\sqrt{x}}-3)=0\)

\(x\neq 1\Rightarrow \sqrt{x}-1\neq 0\). Do đó:

\(\frac{\sqrt{x}+3}{\sqrt{x}}-3=0\Rightarrow 3=2\sqrt{x}\)

\(\Rightarrow x=\frac{9}{4}\) (thỏa mãn)

1 tháng 2 2019

ây ông ở trên ông ghi là \(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

sao xuống dưới lại thành \(\dfrac{\sqrt{x}+3}{\sqrt{x}}\)

sửa lại đi ông ơi

2 tháng 5 2018

Giúp với ạ,mình đang cần gấp

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

18 tháng 10 2018

a)Đkxđ : x#1 , x > 0

Q = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

Q = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

Q=\(\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

Q=\(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

Q=\(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}X\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

Q=\(\dfrac{x-1}{\sqrt{x}}\)

b)Thay x = 2\(\sqrt{2}\)+3 vào phương trình ta được :

Q=\(\dfrac{2\sqrt{2}+3-1}{\sqrt{2\sqrt{2}+3}}\)

Q=\(\dfrac{2\sqrt{2}+2}{\sqrt{\left(\sqrt{2}+1\right)}^2}\)

Q=\(\dfrac{2\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

Q= 2

18 tháng 10 2018

Mysterious Person giup mk

17 tháng 10 2018

a) điều kiện xác định : \(x>0;x\ne1\)

ta có : \(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

\(\Leftrightarrow A=\left(\dfrac{x}{2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\right)\)

\(\Leftrightarrow A=\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(\Leftrightarrow A=\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{x-1}\right)=-2\sqrt{x}\)

b) để \(A>-6\Leftrightarrow-2\sqrt{x}>-6\Leftrightarrow\sqrt{x}< 3\Leftrightarrow0< x< 9\)\(x\ne1\)

vậy ....

17 tháng 10 2018

Mysterious Person giúp mk

17 tháng 10 2018

Đk: x >0 ; x khác 1

sau khi rút gọn ra -2\(\sqrt{x}\)

b, 9>x>0

20 tháng 10 2022

a: ĐKXĐ: x>0; x<>1

\(A=\dfrac{x-1}{2\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)-\sqrt{x}\left(x+2\sqrt{x}+1\right)}{x-1}\)

\(=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1-x-2\sqrt{x}-1\right)}{2\sqrt{x}}=\dfrac{-4x}{2\sqrt{x}}=-2\sqrt{x}\)

b: Để A>-6 thì -2 căn x>-6

=>2 căn x<6

=>0<x<9

NV
9 tháng 12 2018

ĐKXĐ: \(x>0;x\ne1\)

\(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}=\dfrac{x-1+x+\sqrt{x}}{1-x}+\dfrac{x\sqrt{x}-\sqrt{x}+x\sqrt{x}+x}{1+x\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{2\sqrt{x}-1}{1-\sqrt{x}}+\dfrac{\left(2\sqrt{x}-1\right)\sqrt{x}}{x-\sqrt{x}+1}=\left(2\sqrt{x}-1\right)\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\right)\)

\(=\dfrac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\)

Vậy \(A=\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}\right):\left(\dfrac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(A=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

b/ Dễ dàng nhận ra \(A>0\)\(A=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}-1+\dfrac{1}{\sqrt{x}}=\sqrt{17-12\sqrt{2}}-1+\dfrac{1}{\sqrt{17-12\sqrt{2}}}\)

\(A=\sqrt{17-12\sqrt{2}}-1+\sqrt{17+12\sqrt{2}}=\sqrt{\left(3-2\sqrt{2}\right)^2}-1+\sqrt{\left(3+2\sqrt{2}\right)^2}\)

\(\Rightarrow A=3-2\sqrt{2}+3+2\sqrt{2}-1=6-1=5\)

c/ Ta có \(A=\sqrt{x}+\dfrac{1}{\sqrt{x}}-1>2\sqrt{\sqrt{x}.\dfrac{1}{\sqrt{x}}}-1=1\) (dấu "=" không xảy ra)

\(A>0\Rightarrow\sqrt{A}>1\Rightarrow\sqrt{A}-1>0\)

Ta có \(A-\sqrt{A}=\sqrt{A}\left(\sqrt{A}-1\right)>0\) do \(\left\{{}\begin{matrix}\sqrt{A}>0\\\sqrt{A}-1>0\end{matrix}\right.\)

\(\Rightarrow A>\sqrt{A}\) \(\forall x\)