\(A=\dfrac{5\sqrt{x}+3x}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-1}{1-\sqrt{x}}+\dfrac{7}{\sqrt{x}+3}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 8 2021

Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
\(A=\frac{5\sqrt{x}+3x}{(\sqrt{x}-1)(\sqrt{x}+3)}-\frac{(3\sqrt{x}-1)(\sqrt{x}+3)}{(\sqrt{x}-1)(\sqrt{x}+3)}+\frac{7(\sqrt{x}-1)}{(\sqrt{x}+3)(\sqrt{x}-1)}\)

\(=\frac{5\sqrt{x}+3x-(3x+8\sqrt{x}-3)+(7\sqrt{x}-7)}{(\sqrt{x}-1)(\sqrt{x}+3)}=\frac{4(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+3)}=\frac{4}{\sqrt{x}+3}\)

Dễ thấy $A>0$

$\sqrt{x}+3\geq 3\Rightarrow A\leq \frac{4}{3}$

Vậy $0< A\leq \frac{4}{3}$. 

$A$ nguyên $\Leftrightarrow A=1\Leftrightarrow \frac{4}{\sqrt{x}+3}=1$

$\Leftrightarrow \sqrt{x}=1\Leftrightarrow x=1$ (trái đkxđ)

Vậy không tồn tại $x$ để $A$ nguyên.

3 tháng 6 2018

a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm

Từ đó suy ra căn thức vô nghiệm

Vậy không có giá trị nào của x để biểu thức trên xác định

b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)

Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)

\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)

c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)

Rồi làm như câu b

d) \(\sqrt{\dfrac{2-x}{x+3}}\)

Để biểu thức trên xác định thì

\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)

e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi haha )

\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)

Để biểu thức trên xác định thì \(x\ge0\)\(x-3\ge0\Leftrightarrow x\ge3\)

Bữa sau mình làm tiếp

Bài 2: 

a: ĐKXĐ: 2/3x-1/5>=0

=>2/3x>=1/5

hay x>=3/10

b: ĐKXĐ: \(\dfrac{x+1}{2x-3}>=0\)

=>2x-3>0 hoặc x+1<=0

=>x>3/2 hoặc x<=-1

c: ĐKXĐ: \(\left\{{}\begin{matrix}3x-5>=0\\x-4>0\end{matrix}\right.\Leftrightarrow x>4\)

11 tháng 10 2018

Ta có A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) với x≥ 9, x ∈ R

Để A > 0 \(\Leftrightarrow\) \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) > 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-2< 0\\\sqrt{x}+1>0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}< -1\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}< 2\\\sqrt{x}>-1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>4\\x< 1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 4\\x>1\end{matrix}\right.\end{matrix}\right.\)

Kết hợp với ĐKXĐ\(\Rightarrow\) x ∈ ∅

11 tháng 10 2018

ĐKXĐ: x≥9, x∈R

Ta có:

A= \(\left[\dfrac{1+\sqrt{x}-\sqrt{x}}{1+\sqrt{x}}\right]\):\(\left[\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{x-2\sqrt{x}-3\sqrt{x}+6}\right]\)

= \(\left[\dfrac{1}{1+\sqrt{x}}\right]\):\(\left[\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

=\(\left[\dfrac{1}{1+\sqrt{x}}\right]\):\(\left[\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

=\(\left[\dfrac{1}{1+\sqrt{x}}\right]\):\(\left[\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

=\(\dfrac{1}{1+\sqrt{x}}\):\(\dfrac{1}{\sqrt{x}-2}\)

=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

19 tháng 8 2018

a , thu gọn

\(A=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3x+3}{x-9}\right]:\left[\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\right]\)

\(A=\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

\(A=\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(A=\dfrac{-3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)

\(A=-\dfrac{3}{\sqrt{x}+3}\)

b , tự làm

19 tháng 8 2018

\(a\text{) Để biểu thức xác định }\\ \text{thì }\Rightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3\ne0\\x-9\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

\(\text{b) }A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\\ =\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{\sqrt{x}-3}{\sqrt{x}-3}\right)\\ =\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ =\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\\ =\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ =\dfrac{-3}{\sqrt{x}+3}\)

\(c\text{) Để }A\le-\dfrac{1}{3}\\ \text{thì }\Rightarrow\dfrac{-3}{\sqrt{x}+3}\le-\dfrac{1}{3}\\ \Rightarrow\dfrac{3}{\sqrt{x}+3}\ge\dfrac{1}{3}\\ \Rightarrow\dfrac{3}{\sqrt{x}+3}-\dfrac{1}{3}\ge0\\ \Rightarrow\dfrac{9}{3\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}\ge0\\ \Rightarrow\dfrac{9-\sqrt{x}-3}{3\left(\sqrt{x}+3\right)}\ge0\\ \Rightarrow\dfrac{\sqrt{x}-6}{\sqrt{x}+3}\le0\\ \Leftrightarrow\sqrt{x}-6\ge0\left(\text{Vì }\sqrt{x}+3>0\right)\\ \Leftrightarrow\sqrt{x}\ge6\\ \Leftrightarrow x\ge36\)

\(d\text{) Do }\sqrt{x}\ge0\\ \Rightarrow\sqrt{x}+3\ge3\\ \Rightarrow\dfrac{-3}{\sqrt{x}+3}\ge-1\\ \text{Dấu }"="\text{ }xảy\text{ }ra\text{ }khi:\text{ }x=0\)

Vậy..............

10 tháng 8 2017

2. \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}=\)

\(\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{4+\sqrt{25}}=\sqrt{4+5}=3\)

3. Ta có: VT=\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}:\sqrt{a}\right).\left(\dfrac{1-\sqrt{a}}{1-a}\right)=\left[\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}.\dfrac{1}{\sqrt{a}}\right].\left[\dfrac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right]=\dfrac{1+\sqrt{a}+a}{\sqrt{a}}.\dfrac{1}{1+\sqrt{a}}=\dfrac{1+\sqrt{a}+a}{\sqrt{a}+a}=\dfrac{1}{\sqrt{a}+a}+1\)

??? Sao rút gọn rồi ra kì vậy nhờ =="

1,

a.

\(\left[{}\begin{matrix}x-5\sqrt{x}+6\ne0\\\sqrt{x}-2\ne0\\3-\sqrt{x}\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\ne0\\\sqrt{x}\ne2\\\sqrt{x}\ne3\end{matrix}\right.\)

\(\left[{}\begin{matrix}\sqrt{x}\ne3\\\sqrt{x}\ne2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ne9\\x\ne4\end{matrix}\right.\)

Vậy ĐKXĐ : \(\left[{}\begin{matrix}x\ne9\\x\ne4\end{matrix}\right.\)

a: ĐKXĐ: x>=0; x<>1

b: \(P=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-\left(5x-7\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-\left(5\sqrt{x}-2\right)}{\sqrt{x}+3}\)

Để P=1/2 thì \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{1}{2}\)

\(\Leftrightarrow-10\sqrt{x}+4=\sqrt{x}+3\)

\(\Leftrightarrow-11\sqrt{x}=-1\)

=>x=1/121

c: \(P-\dfrac{2}{3}=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}< 0\)

=>P<2/3

14 tháng 6 2017

đk biểu thức trong căn là không âm (với phân số thì kết hợp thêm mẫu khác 0), vậy thôi chứ không khó đâu

13 tháng 3 2021

a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)

\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)

13 tháng 3 2021

a') (tiếp)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)

Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)

Với mọi \(x\ge4\), ta có:

\(\sqrt{3x+1}>0\)\(\sqrt{x-4}\ge0\)

\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)

\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)

Do đó phương trình (1) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

Bài 1: 

a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)

=>3 căn x=3

=>căn x=1

hay x=1(loại)