Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
Ta có: 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ... + ( 1 + 2 + 3 +...+ 2020)
= ( 1 + 1 + 1 +... + 1 ) + (2 + 2 +...+ 2 ) + ( 3 + 3+...+ 3 ) + ...+ 2020
Có 2020 số 1 ; 2019 số 2 ; 2018 số 3 ;... ; 1 số 2020
= 2020 x 1 + 2019 x 2 + 2018 x 3 + ... + 2020x 1
=> \(M=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+...+2020\times1}\)
= \(\frac{1\times2020+2\times2019+...+2020\times1}{1\times2020+2\times2019+...+2020\times1}=1\)
Lời giải:
Gọi tích trên là $A$. Ta có:
$A=\frac{1}{2}\times \frac{2}{3}\times \frac{3}{4}\times \frac{4}{5}\times \frac{5}{6}$
$=\frac{1\times 2\times 3\times 4\times 5}{2\times 3\times 4\times 5\times 6}=\frac{1}{6}$
vi 2018/2019<1
2019/2020<1
2020/2021<1
nen 2018/2019 + 2019/2020 + 2020/2021<1+1+1=3
A = 2017 - ( 1 -\(\frac{3}{4}\)) - ( 1 - \(\frac{3}{5}\)) -...- ( 1 - \(\frac{3}{2020}\)) : Còn lại
A = 2017 - 1 + \(\frac{3}{4}\) - 1 + \(\frac{3}{5}\) -... - 1 +\(\frac{3}{2020}\) : Còn lại
A = 0 + \(\frac{3}{4}\)+\(\frac{3}{5}\)+\(\frac{3}{2020}\) : CÒn lại
A = 3 x ( \(\frac{1}{4}\)+\(\frac{1}{5}\)+...+ \(\frac{1}{2020}\)) : ( \(\frac{1}{4x5}\)+\(\frac{1}{5x5}\) + ... )
A = 3 : \(\frac{1}{5}\)
A = 15
= 15 nha
đúng 1000000000000000000000000000000% đó cái này ở violympic cấp tỉnh lớp 5 đó....
\(A=\frac{2020}{2019}-\frac{2019}{2018}+\frac{1}{2019\times2018}\)
\(=\frac{2020\times2018}{2019\times2018}-\frac{2019\times2019}{2019\times2018}+\frac{1}{2019\times2018}\)
\(=\frac{2020\times2018-2019\times2019+1}{2019\times2018}\)
\(=\frac{\left(2019+1\right)\times\left(2019-1\right)-2019\times2019+1}{2019\times2018}\)
\(=\frac{2019\times2019-2019+2019-1-2019\times2019+1}{2019\times2018}\)
\(=\frac{2019\times2019-1-\left(2019\times2019-1\right)}{2019\times2018}\)
\(=\frac{0}{2019\times2018}\)
\(=0\)
Vậy A = 0
ta có
A=2020*2018/2019*2018-2019*2019/2018*2019+1/2018*2019
=>A*(2018*2019)=2020*2018-2019*2019+1
=>A*(2018*2019)=(2019+1)*2018-(2018+1)*2019+1
=>A*(2018*2019)=(2019*2018+2018)-(2018*2019+2019)+1
=>A*(2018*2019)=2019*2018+2018-2018*2019-2019+1
=>A*(2018*2019)=2018-2019+1
=>A*(2018*2019)=2018+1-2019
=>A*(2018*2019)=0
=>A=0/(2018*2019)
=>A=0
Mình thi rồi, mình biết là 15 nhưng mình cần CÁCH GIẢI !
\(A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+3\times2018+...+2020\times1}\)
Ta có: \(1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)\)
\(=\left(1+1+1+...+1\right)+\left(2+2+2+...+2\right)+\left(3+3+3+...+3\right)+...+\left(2019+2019\right)+2020\)
Trong đó có: 2020 số 1, 2019 số 2, 2018 số 3,..., 2 số 2019, 1 số 2020
Vậy: \(\left(1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+3+...+3\right)+...+2020\)
\(=1\times2020+2\times2019+3\times2018+...+2020\times1\)
\(\Rightarrow A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+3\times2018+...+2020\times1}\)
\(A=\dfrac{1\times2020+2\times2019+3\times2018+...+2020\times1}{1\times2020+2\times2019+3\times2018+...+2020\times1}=1\)