Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow-\dfrac{23}{5}\cdot\dfrac{50}{23}< =x< =\dfrac{-13}{5}:\dfrac{21}{15}\)
=>-10<=x<=-13/7
hay \(x\in\left\{-10;-9;...;-2\right\}\)
b: \(\Leftrightarrow-\dfrac{13}{3}\cdot\dfrac{1}{3}< =x< =-\dfrac{2}{3}\cdot\dfrac{-11}{12}\)
=>-13/9<=x<=11/18
hay \(x\in\left\{-1;0\right\}\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\)
=>\(A< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{8\cdot9}\)
=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}=1-\dfrac{1}{9}=\dfrac{8}{9}\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\)
=>\(A>\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
=>\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
=>\(A>\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{5}{10}-\dfrac{1}{10}=\dfrac{4}{10}=\dfrac{2}{5}\)
Do đó: \(\dfrac{2}{5}< A< \dfrac{8}{9}\)
Cho \(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\). Chứng minh A < 2.
\(2A=2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+\dfrac{5}{2^4}+...+\dfrac{100}{2^{99}}\)
=> \(2A-A=A=1+\dfrac{3}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+....+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)
Đặt \(B=\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}\)
=> \(2B=\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{98}}\)
=> \(B=\dfrac{1}{2^2}-\dfrac{1}{2^{99}}\)
=> \(A=1+\dfrac{3}{2^2}+\dfrac{1}{2^2}-\dfrac{100}{2^{100}}-\dfrac{1}{2^{99}}\)
=> \(A=2-\dfrac{102}{2^{100}}< 2\)
Ta có:
\(\dfrac{1}{2^2}=\dfrac{1}{2\cdot2}< \dfrac{1}{1\cdot2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3\cdot3}< \dfrac{1}{2\cdot3}\)
\(\dfrac{1}{4^2}=\dfrac{1}{4\cdot4}< \dfrac{1}{3\cdot4}\)
...
\(\dfrac{1}{9^2}=\dfrac{1}{9\cdot9}< \dfrac{1}{8\cdot9}\)
\(\dfrac{1}{10^2}=\dfrac{1}{10\cdot10}< \dfrac{1}{9\cdot10}\)
\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A< 1-\dfrac{1}{10}\)
\(\Rightarrow A< \dfrac{9}{10}\)
\(\Rightarrow A< 1\) (vì: \(\dfrac{9}{10}< 1\))
a/ \(2016\dfrac{1}{6}:\dfrac{-2}{5}-16\dfrac{1}{6}:\dfrac{-2}{5}\)
\(=2016\dfrac{1}{6}.\dfrac{-5}{2}-16\dfrac{1}{6}.\dfrac{-5}{2}\)
\(=\dfrac{-5}{2}\left(2016\dfrac{1}{6}-16\dfrac{1}{6}\right)\)
\(=\dfrac{-5}{2}.2000\)
\(=-5000\)
b/ \(\left(\dfrac{4}{3}-\dfrac{3}{2}\right)^2-2.\left|-\dfrac{1}{9}\right|+\sqrt{\dfrac{4}{81}}\)
\(=\left(\dfrac{8}{6}-\dfrac{9}{6}\right)^2-2.\dfrac{1}{9}+\dfrac{2}{9}\)
\(=\dfrac{1}{4}-\dfrac{2}{9}+\dfrac{2}{9}\)
\(=\dfrac{1}{36}+\dfrac{2}{9}\)
\(=\dfrac{1}{4}\)
\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2016}}\)
\(\Leftrightarrow\dfrac{1}{5}A=\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2017}}\)
\(\Rightarrow A-\dfrac{1}{5}A=\dfrac{1}{5}-\dfrac{1}{5^{2017}}\)
\(\Leftrightarrow\dfrac{4A}{5}=\dfrac{1}{5}-\dfrac{1}{5^{2017}}\)
\(\Leftrightarrow A=\dfrac{1}{4}-\dfrac{1}{4.5^{2016}}< \dfrac{1}{4}\)
A = 1/5 + 1/52 + 1/53+ ......+1/52015 + 1/52016
5.A = 1+ 1/5 + 1/52 + 1/53+.......+ 1/52015
5A - A = 1 - 1/52015
4A = 1 - 1/52015
A = ( 1 - 1/52015): 4
A = 1/4 - 1/\(4.5^{2016}\) < 1/4