Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giải
Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)
\(\Rightarrow A< A.M\)
hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)
\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)
\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)
\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)
Vậy \(A< \dfrac{1}{10}\)
1) \(x+\dfrac{30}{100}x=-1,31\)
\(\Leftrightarrow x+\dfrac{3}{10}x=-\dfrac{131}{100}\)
\(\Leftrightarrow100x+30x=-131\)
\(\Leftrightarrow130x=-131\)
\(\Leftrightarrow x=-\dfrac{131}{130}\)
Vậy \(x=-\dfrac{131}{130}\)
b) \(\left(4,5-2x\right)\cdot\left(-1\dfrac{4}{7}\right)=\dfrac{11}{4}\)
\(\Leftrightarrow\left(\dfrac{9}{2}-2x\right)\cdot\left(-\dfrac{4}{7}\right)=\dfrac{11}{4}\)
\(\Leftrightarrow-\dfrac{18}{7}+\dfrac{8}{7}x=\dfrac{11}{4}\)
\(\Leftrightarrow-72+32x=77\)
\(\Leftrightarrow32x=77+72\)
\(\Leftrightarrow32x=149\)
\(\Leftrightarrow x=\dfrac{149}{32}\)
Vậy \(x=\dfrac{149}{32}\)
1: =>7/3x=3+1/3-8-2/3=-5-1/3=-16/3
=>x=-16/3:7/3=-7/16
2: =>1/3|x-2|=4/5+3/7=28/35+15/35=43/35
=>|x-2|=129/35
=>x-2=129/35 hoặc x-2=-129/35
=>x=199/35 hoặc x=-59/35
\(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+.....+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.....+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{50}\right)\)
\(=\dfrac{1}{51}+\dfrac{1}{52}+......+\dfrac{1}{100}\)
2) Tinh nhanh:
a) \(\dfrac{5}{23}\) . \(\dfrac{17}{26}\) + \(\dfrac{5}{23}\) . \(\dfrac{10}{26}\) - \(\dfrac{5}{23}\)
= \(\dfrac{5}{23}\) . \(\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)
= \(\dfrac{5}{23}\) . \(\left(\dfrac{27}{26}-1\right)\) = \(\dfrac{5}{23}\) . \(\dfrac{1}{26}\)
= \(\dfrac{5}{598}\)
b) \(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)
= \(\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)
= \(\dfrac{5}{9}\) . 1= \(\dfrac{5}{9}\)
\(\dfrac{48}{25}\cdot\dfrac{27}{55}+2\dfrac{4}{9}\cdot\dfrac{14}{33}\)
\(=\dfrac{1296}{1375}+\dfrac{22}{9}\cdot\dfrac{14}{33}\\ =\dfrac{1296}{1375}+\dfrac{28}{27}\\ =\dfrac{34992}{37125}+\dfrac{38500}{37125}\\ =\dfrac{73492}{37125}\)
\(1\dfrac{19}{22}\cdot\left(\dfrac{47}{77}-\dfrac{16}{15}\right)\\ =\dfrac{41}{22}\cdot\dfrac{-527}{1155}\\ =\dfrac{-21607}{25410}\)
\(\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right)-\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\\ =\left(\dfrac{307}{99}+\dfrac{37}{99}-\dfrac{1503}{299}\right)-0\\ =\dfrac{344}{99}-\dfrac{1053}{299}\\ =-\dfrac{107}{2277}\)
Ta có: \(B=\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
\(B=\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right)\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)\)
\(B=\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right)\left(\dfrac{3}{6}+\dfrac{-2}{6}+\dfrac{-1}{6}\right)\)
\(B=\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right)\left(\dfrac{3+\left(-2\right)+\left(-1\right)}{6}\right)\)
\(B=\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right).0=0\)
Tick mk vs !
B = (3\(\dfrac{10}{99}\)+4\(\dfrac{11}{99}\)-5\(\dfrac{8}{299}\)).0
B = 0
A=1+2+3+4+5+...+99+100
A=\(\dfrac{100.\left(100+1\right)}{2}\)=5050
Vậy A=5050
B=\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
B=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
B=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
B=\(1-\dfrac{1}{100}\)=\(\dfrac{99}{100}\)
Vậy B=\(\dfrac{99}{100}\)
a , \(\left(\dfrac{-2}{3}+1\dfrac{1}{4}-\dfrac{1}{6}\right):\dfrac{-24}{10}\)
=\(\left(\dfrac{-2}{3}+\dfrac{5}{4}-\dfrac{1}{6}\right):\dfrac{-12}{5}\)
=\(\left(\dfrac{-8}{12}+\dfrac{15}{12}-\dfrac{2}{12}\right)\cdot\dfrac{-5}{12}\)
=\(\dfrac{5}{12}\cdot\dfrac{-5}{12}=\dfrac{-25}{144}\)
b , \(\dfrac{13}{15}\cdot0,25\cdot3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right)1\dfrac{23}{24}\)
=\(\dfrac{13}{15}\cdot\dfrac{1}{4}\cdot3+\left(\dfrac{8}{15}-\dfrac{79}{60}\right)\cdot\dfrac{57}{24}\)
=\(\dfrac{13}{20}-\dfrac{47}{60}\cdot\dfrac{57}{24}\)
=\(\dfrac{13}{20}-\dfrac{893}{480}=\dfrac{312}{480}-\dfrac{893}{480}=\dfrac{-581}{480}\)
c , \(\left(\dfrac{12}{32}+\dfrac{5}{-20}-\dfrac{10}{24}\right):\dfrac{2}{3}\)
=\(\left(\dfrac{180}{480}-\dfrac{120}{480}-\dfrac{200}{480}\right)\cdot\dfrac{3}{2}\)
= \(\dfrac{-7}{24}\cdot\dfrac{3}{2}=\dfrac{-7}{16}\)
d , \(4\dfrac{1}{2}:\left(2,5-3\dfrac{3}{4}\right)+\left(-\dfrac{1}{2}\right)\)
=\(\dfrac{9}{2}:\left(\dfrac{5}{2}-\dfrac{15}{4}\right)-\dfrac{1}{2}\)
=\(\dfrac{9}{2}:\dfrac{-5}{4}-\dfrac{1}{2}=\dfrac{9}{2}\cdot\dfrac{-4}{5}-\dfrac{1}{2}=\dfrac{-18}{5}-\dfrac{1}{2}=\dfrac{-41}{10}\)
e , \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)=\dfrac{-5}{2}\left(\dfrac{3}{4}-\dfrac{2}{4}\right)\)
=\(\dfrac{-5}{2}:\dfrac{1}{4}=\dfrac{-5}{2}\cdot4=-10\)
\(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\\ < \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{97}{98}.\dfrac{98}{99}< \dfrac{1}{99}\\ < \dfrac{1}{10}.\\\\ =>A< \dfrac{1}{10}\)