Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}S\in\left(SAC\right)\\S\in\left(SBD\right)\end{matrix}\right.\) \(\Rightarrow S=\left(SAC\right)\cap\left(SBD\right)\)
\(\left\{{}\begin{matrix}O\in AC\in\left(SAC\right)\\O\in BD\in\left(SBD\right)\end{matrix}\right.\) \(\Rightarrow O=\left(SAC\right)\cap\left(SBD\right)\)
\(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)
\(lim\left(\sqrt[3]{n^3+4}-\sqrt[3]{n^3-1}\right)\)
\(=lim\left(\sqrt[3]{1+\dfrac{4}{n^3}}-\sqrt[3]{1-\dfrac{1}{n^3}}\right)=\sqrt[3]{1}-\sqrt[3]{1}=0\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{x-5x^2+1}{x^2-1}=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}-5+\dfrac{1}{x^2}}{1-\dfrac{1}{x^2}}=\dfrac{-5}{1}=-5\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{5x^3\left(2-x^2\right)^3\left(4x^2+1\right)^2}{4x^{13}+x^2-6}=\lim\limits_{x\rightarrow+\infty}\dfrac{5\left(\dfrac{2}{x^2}-1\right)^3\left(4+\dfrac{1}{x^2}\right)^2}{4+\dfrac{1}{x^{11}}-\dfrac{6}{x^{13}}}=\dfrac{5.\left(-1\right)^3.4^2}{4}=-20\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{4x-\sqrt{9x^2+x}}{3-x}=\lim\limits_{x\rightarrow+\infty}\dfrac{4-\sqrt{9+\dfrac{1}{x}}}{\dfrac{3}{x}-1}=\dfrac{4-3}{-1}=-1\)
\(\lim\limits_{x\rightarrow1}\dfrac{2-\sqrt[]{2x-1}\sqrt[3]{5x+3}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{2-2\sqrt[]{2x-1}+2\sqrt[]{2x-1}-\sqrt[]{2x-1}.\sqrt[3]{5x+3}}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{2\left(1-\sqrt[]{2x-1}\right)+\sqrt[]{2x-1}\left(2-\sqrt[3]{5x+3}\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{-\dfrac{4\left(x-1\right)}{1+\sqrt[]{2x-1}}-\dfrac{5\sqrt[]{2x-1}\left(x-1\right)}{4+2\sqrt[3]{5x+3}+\sqrt[3]{\left(5x+3\right)^2}}}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\left(-\dfrac{4}{1+\sqrt[]{2x-1}}-\dfrac{5\sqrt[]{2x-1}}{4+2\sqrt[3]{5x+3}+\sqrt[3]{\left(5x+3\right)^2}}\right)\)
\(=-\dfrac{4}{1+1}-\dfrac{5\sqrt[]{1}}{4+4+4}=-\dfrac{29}{12}\)