Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9x+5y = 17x - 8x + 17y - 12y = 17(x+y) - 4(2x+3y)
chia hết cho 17 khi và chỉ khi 2x+3y chia hết cho 17
=>Nếu 2x+3y chia hết cho 17 thì 9x+5y cũng chia hết cho 17 và điều ngược lại cũng đúng
Ý 1: Chứng tỏ 2x + 3y chia hết cho 17 $\Leftrightarrow$⇔ 9x + 5y chia hết cho 17
2x+ 3y chia hết cho 17 $\Rightarrow$⇒4.(2x+ 3y) chia hết cho 17 hay 8x+ 12y chia hết cho 17
17.(x+y) chia hết cho 17 $\Rightarrow$⇒ 17x+17y chia hết cho 17
$\Rightarrow$⇒ (17x+17y ) -(8x+ 12y ) chia hết cho 17
$\Rightarrow$⇒ 17x+17y -8x- 12y chia hết cho 17
$\Rightarrow$⇒9x+y chia hết cho 17
Vậy 2x + 3y chia hết cho 17
Ta có: 2x + 3y chia hết cho 17 => 4(2x + 3y) chia hết cho 17
17 chia hết cho 17 => 17(x + y) chia hết cho 17
=> 17(x + y) - 4(2x + 3y) chia hết cho 17
=> 17x + 17y - 8x - 12y chia hết cho 17
=> 9x + 5y chia hết cho 17 (đpcm)
Ngược lại:
Ta có: 9x + 5y chia hết cho 17
=> 17(x + y) - (9x + 5y) chia hết cho 17
=> 17x + 17y - 9x - 5y chia hết cho 17
=> 8x + 12y chia hết cho 17
=> 4(2x + 3y) chia hết cho 17
Mà (4,17) = 1
=> 2x + 3y chia hết cho 17 (đpcm)
Cậu nhân 2x + 3y lên 5 lần rồi lấy 3 lần 9x + 5y trừ đi ra 17 x chia hết cho 17 => đpcm
+, Nếu 2x+3y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
=> 26x+39y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17
=> 26x+39y-17x-34y chia hết cho 17
=> 9x+5y chia hết cho 17
+, Nếu 9x+5y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17
=> 9x+5y+17x+34y chia hết cho 17
=> 26x+39y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
=> 2x+3y chia hết cho 17 ( vì 13 và 17 là 2 số nguyên tố cùng nhau )
=> ĐPCM
Tk mk nha
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
9x+5y = 17x - 8x + 17y - 12y = 17(x+y) - 4(2x+3y)
chia hết cho 17 khi và chỉ khi 2x+3y chia hết cho 17
=>Nếu 2x+3y chia hết cho 17 thì 9x+5y cũng chia hết cho 17 và điều ngược lại cũng đung
xét tổng 4( 2x + 3y ) + 9x + 5y
= 8x + 12y + 9x + 5y
= ( 8x + 9x ) + ( 12y + 5y )
= 17x + 17y
= 17 ( x + y ) chia hết cho 17
nếu 2x + 3y chia hết cho 17 => 4 ( 2x + 3y ) chia hêt cho 17 => 9x + 5y chia hết cho 17
vậy ...........................