Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: vecto AB-vecto AD
=vecto DA+vecto AB
=vecto DB
-vecto CD-veco BC
=vecto CB-vecto CD
=vecto DC+vecto CB=vecto DB
=>vecto AB+vecto CD=vecto AD-vecto BC
b: \(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CA}+\overrightarrow{AB}=\overrightarrow{CB}\)
\(\overrightarrow{CD}-\overrightarrow{BD}=\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{CB}\)
Do đó: \(\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{CD}-\overrightarrow{BD}\)
=>\(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}-\overrightarrow{BD}\)
c: \(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{DA}+\overrightarrow{AB}=\overrightarrow{DB}\)
\(\overrightarrow{CB}-\overrightarrow{CD}=\overrightarrow{DC}+\overrightarrow{CB}=\overrightarrow{DB}\)
Do đó: \(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{CB}-\overrightarrow{CD}\)
=>\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)
bài 1
a CO-OB=BA
<=.> CO = BA +OB
<=> CO=OA ( LUÔN ĐÚNG )=>ĐPCM
b AB-BC=DB
<=> AB=DB+BC
<=> AB=DC(LUÔN ĐÚNG )=> ĐPCM
Cc DA-DB=OD-OC
<=> DA+BD= OD+CO
<=> BA= CD (LUÔN ĐÚNG )=> ĐPCM
d DA-DB+DC=0
VT= DA +BD+DC
= BA+DC
Mà BA=CD(CMT)
=> VT= CD+DC=O
Do là giao điểm của hai đường chéo hình bình hành nên:
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)\(=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}\) (ĐPCM).
Gọi BE, CF, AN là đường cao của TAM GIÁC ABC
Vì BE//DC⇒BH//DC(1)
CF//BD⇒CD//BH(2)
Từ (1)và(2)⇒BHCD là hình bình hành
Vì O là tâm của hình bình hành ABCD
nên O là trung điểm chung của AC và BD
=>\(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0};\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}\)
\(\dfrac{1}{4}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right)\)
\(=\dfrac{1}{4}\left(\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\right)\)
\(=\dfrac{1}{4}\left(4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}\right)\)
\(=\dfrac{1}{4}\cdot4\overrightarrow{MO}=\overrightarrow{MO}\)
Chứng minh:\(\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=4\overrightarrow{SO}\)
Ta có: \(\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=\overrightarrow{SO}+\overrightarrow{OA}+\overrightarrow{SO}+\overrightarrow{OB}+\overrightarrow{SO}+\overrightarrow{OC}+\overrightarrow{SO}+\overrightarrow{OD}\)\(=4\overrightarrow{SO}+\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right)\)
Mà: \(\overrightarrow{OA}+\overrightarrow{OB}=2\overrightarrow{OM}\) và \(\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{ON}\)
\(=4\overrightarrow{SO}+\left(2\overrightarrow{OM}+2\overrightarrow{ON}\right)\)
\(=4\overrightarrow{SO}+2\left(\overrightarrow{OM}+\overrightarrow{ON}\right)=4\overrightarrow{SO}+2.\overrightarrow{0}=4\overrightarrow{SO}\left(đpcm\right)\)
a/ \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{DB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\)
b/ \(\overrightarrow{MN}+2\overrightarrow{PO}+\overrightarrow{MQ}=\overrightarrow{MN}+\overrightarrow{PM}+\overrightarrow{MQ}=\overrightarrow{MN}+\overrightarrow{PQ}=\overrightarrow{0}\)