\(a^2+b^2\ge2ab\)

b, Cho A=(a+1)(b+1) trong đó ab=1(a>0;b>0...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2018

Có : (a-b)^2 >= 0 

<=> a^2-2ab+b^2 >= 0

<=> a^2-2ab+b^2+2ab >= 0 + 2ab

<=> a^2+b^2 >= 2ab

Áp dụng bđt trên thì A >= \(2\sqrt{a.1}+2\sqrt{b.1}\) = \(2\sqrt{a}+2\sqrt{b}\)>=  \(2\sqrt{2\sqrt{a}.2\sqrt{b}}\)

\(2\sqrt{4.\sqrt{ab}}\)=  \(2\sqrt{4.1}\)=  4

=> ĐPCM

Dấu "=" xảy ra <=> a=b=1

Tk mk nha

26 tháng 8 2020

1) Ta có: \(a< b\Leftrightarrow a\div b< b\div b\)

=> \(\frac{a}{b}< 1\)

2) \(a>b\Leftrightarrow a\div b>b\div b\)

=> \(\frac{a}{b}>1\)

26 tháng 8 2020

Gỉa sử : \(\frac{a}{b}< \frac{a+c}{b+c}< =>ab+ac< ab+bc\)

\(< =>ac< bc< =>a< b\)(đpcm)

Gỉa sử : \(\frac{a}{b}>\frac{a+c}{b+c}< =>ab+ac>ab+bc\)

\(< =>ac>bc< =>a>b\)(đpcm)

27 tháng 7 2019

#)Góp ý :

dao xuan tung đề lỗi ak bn ?

a) vô lí vì \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
 

27 tháng 7 2019

Ko phải đâu hai đề khác nhau nha

21 tháng 6 2017

\(\frac{a}{b}< \frac{a}{b+1}\)(2 phân số cùng tử số, mẫu số nào bé hơn thì phân số đó lớn hơn)

\(\frac{a}{b+1}< \frac{a+1}{b+1}\)(2 phân số cùng mẫu số, tử số nào lớn hơn thì phân số đó lớn hơn)

Từ đó suy ra \(\frac{a}{b}< \frac{a+1}{b+1}\)

31 tháng 1 2018

Tự vẽ hình

a, Áp dụng định lý pytago vào tam giác ABH vuông tại H và AcH vuông tại H ta có:

 \(BH^2+AH^2=AB^2\Rightarrow BH^2=AB^2-AH^2\left(1\right)\)

\(\text{C}H^2+AH^2=A\text{C}^2\Rightarrow\text{C}H^2=A\text{C}^2-AH^2\left(2\right)\)

Mà AB > AC (3)

Từ (1),(2),(3) => BH > CH

b, Làm tương tự Câu a