Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath
a, Gọi d là ƯCLN\((12n+1,30n+2)\)\((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5(12n+1)⋮d\\2(30n+2)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow(60n+5)-(60n+4)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy d = 1 để \(\frac{12n+1}{30n+2}\)là phân số tối giản với mọi số tự nhiên n
Câu b tự làm
\(b)\)\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot10\)
\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(ĐPCM\right)\)
a) Gọi d là ƯCLN (12n+1;30n+2)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
b) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)
a) Giả sử: 12n+1 / 30n+2 = d , ta có : (12n+1) chia hết d và (30n+2) chia hết cho d
Suy ra :[ 30(12n+1) / 12(30n+2) ]
[ 5 (12+1) / 2 ( 30n+2) ] suy ra : (60n+5)-(60n+4) chia hết cho d hay chia hết cho 1
vậy 12n+1 / 30n+2 là phân số tối giản với mọi n thuộc Z
B) 1/22+1/32+1/42+...+1/1002
< 1/1x2 +1/2x3 +1/3x4 +...+ 1/99x100
< 1/1 - 1/2 + 1/2 -1/3 +1/3 -1/4 +...+1/99 - 1/100
< 1 - 1/100 = 99 / 100
Vì 99 /100 < 1 nên 1/22 + 1/32 + 1/42+...+ 1/1002 <1
Gọi UWCLN(2n+1;4n2+1) = d : (n thuộc N)
Suy ra : 2n + 1 chia hết cho d , do đó 2n(2n+1)chia hết cho d
hay 4n2 + 2n chia hết cho d
Áp dụng tính chất chia hết của 1 hiệu
4n2 + 2n - (2n + 1) chia hết cho d
Theo bài ra 4n2 + 1 chia hết cho d . Áp dụng tính chất chia hết của 1 hiệu , ta được
4n2 - 1 - (4n2 -1) chia hết cho d
4n2 - 4n2 + 1 chia hết cho d
2 chia hết cho d
Suy ra : d = {1;2}
Vì 2n + 1 và 4n2 + 1 là các số lẻ nên d=1
Vậy 2n+1 là các số tối giản với mọi số tự nhiên n
a) 74n-1 \(⋮\)74-1=2401-1=2400\(⋮\)5
b) 34n+1+2=(32)2n.3+2=92n.3+2
Ta có: 9≡-1(mod 5)
=> 92n≡1(mod 5)
=> 92n.3≡3(mod 5)
=>92n.3+2≡0(mod 5)
=>92n.3+2\(⋮\)5
Máy mình bị lỗi nhấn đọc tiếp ko được!
Cho mình xin lỗi!
Chúc bạn học tốt!
câu a: 7^4n = (7^4)^n
vì 7^4 tận cùng là 1, mà số tận cùng 1 mũ n vẫn luôn tận cùng là 1 => số đó trừ 1 sẽ tận cùng là 0 nên luôn chia hết cho 5
Câu 1: Giải
Ta có :\(\hept{\begin{cases}3^{100}=3^{4.25}=\overline{...1}\\19^{990}=19^{998+2}=19^{247.4}.19^2=\overline{...1}.\overline{...1}=\overline{...1}\end{cases}}\)
\(\Rightarrow3^{100}+19^{990}=\left(...1\right)+\left(...1\right)=\left(...2\right)⋮2\left(đpcm\right)\)
Câu 2 : Giải
Đặt \(d=\left(12n+1,20n+2\right)\)
\(\Rightarrow\hept{\begin{cases}\left(12n+1\right)⋮d\\\left(30n+2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[5\left(12n+1\right)\right]⋮d\\\left[2\left(30n+2\right)\right]⋮d\end{cases}}\)
\(\Leftrightarrow\left[5\left(12n+1\right)-2\left(30n+2\right)\right]⋮d\)
hay \(\left[60n+5-60-4\right]⋮d\)
\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\) tối giản với mọi n \(\inℤ\)
Ta có:3,7,9 nhân lên lũy thừa 4n sẽ có chữ số tận cùng =1
1.
3100+19990=...1+19988.192
=...1+...1. (...1)
= ...1+...1
=...2 chia hết cho 2(số có chữ số tận cùng là chữ số chẵn chia hết cho 2)
2.
Gọi ƯC(12n+1,30n+2)=d
ta có: 12n+1 chia hết cho d=>5(12n+1) chia hết cho d=>60n+5 chia hết cho d (1)
30n+2 chia hết cho d=>2(30n+2) chia hết cho d=>60n+4 chia hết cho d (2)
Từ (1) và (2),suy ra: 60n+5-(60n+4) chia hết cho d
60n+5-60n-4 chia hết cho d
5-4 chia hết cho d
1 chia hết cho d
Ư(1)={1;-1}
=>bất cứ số nguyên n nào cx thích hợp để 12n+1/30n+2 là P/S tối giản!