Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(4a^2+3ab-11b^2\)
\(=5a^2+5ab-10b^2-a^2-2ab-b^2\)
\(=5a^2+5ab-10b^2-\left(a+b\right)^2\)
Vì \(5a^2+5ab-10b^2⋮5\Rightarrow\left(a+b\right)^2⋮5\Rightarrow a+b⋮5\)
\(\Rightarrow a^4-b^4=\left(a+b\right)\left(a-b\right)\left(a^2+b^2\right)⋮5\)
(vì a+b chia hết cho 5)
Vậy \(a^4-b^4⋮5\left(đpcm\right)\)
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
Lời giải:
1)
Ta có : \(A=81^7-27^9-9^{13}=(3^4)^7-(3^3)^9-(3^2)^{13}\)
\(\Leftrightarrow A=3^{28}-3^{27}-3^{26}=3^{26}(3^2-3-1)\)
\(\Leftrightarrow A=5.3^{26}=405.3^{22}\)
Do đó \(A\vdots 405\) (đpcm)
2)
Ta thấy : \(12^{2}\equiv 11\pmod {133}\)
\(\Rightarrow 12^{2n+1}\equiv 11^{n}.12\pmod {133}\)
\(\Rightarrow 12^{2n+1}+11^{n+2}\equiv 11^n.12+11^{n+2}\pmod {133}\)
\(\Leftrightarrow 12^{2n+1}+11^{n+2}\equiv 11^n(12+11^2)\equiv 11^n.133\equiv 0\pmod {133}\)
Do đó: \(12^{2n+1}+11^{n+2}\vdots 133\) (đpcm)
3)
Ta thấy \(A=5x+2y;B=9x+7y\Rightarrow 3A+4B=51x+34y\)
Vì \(51\vdots 17;34\vdots 17\Rightarrow 3A+4B\vdots 17\)
Nếu \(A\vdots 17\Rightarrow 4B\vdots 17\). Mà $(4,17)$ nguyên tố cùng nhau nên \(B\vdots 17\)
Do đó ta có đpcm.
\(A=7^1+7^2+7^3+7^4+...+7^{4k}\)
\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)
\(=7.\left(1+7+7^2+7^3\right)+...+7^{4k-3}.\left(1+7+7^2+7^3\right)\)
\(=7.\left(1+7+49+343\right)+...+7^{4k-3}.\left(1+7+49+343\right)\)
\(=7.400+...+7^{4k-3}.400=400.\left(7+...+7^{4k-3}\right)\)
\(=100.\left[4.\left(7+...+7^{4k-3}\right)\right]⋮100\)
=> đpcm
a: \(=\left(328+172\right)\left(328^2+328\cdot172+172^2\right)\)
\(=5000\cdot4\left(26896+328\cdot43+7396\right)⋮20000\)
b: \(=69\left(69-5\right)=69\cdot64⋮32\)
\(a,n^3+6n^2+8n\)
\(=n\left(n^2+6n+8\right)\)
\(=n\left(n^2+4n+2n+8\right)\)
\(=n\left[\left(n^2+4n\right)+\left(2n+8\right)\right]\)
\(=n\left[n\left(n+4\right)+2\left(n+4\right)\right]\)
\(=n\left(n+2\right)\left(n+4\right)\)
Vì n chẵn ,đây là tích của ba số chẵn liên tiếp => chia hết cho 48
b, tương tự a
Ta có : \(B=\left(1+100\right)+\left(2+99\right)+...+\left(50+51\right)=101.50\)
Ta lại có : \(A=\left(1^3+100^3\right)+\left(2^3+99^3\right)+...+\left(50^3+51^3\right)\)
\(=\left(1+100\right)\left(1^2+100+100^2\right)+\left(2+99\right)\left(2^2+2.99+99^2\right)+...+\left(50+51\right)\left(50^2+50.51+51^2\right)\)
\(=101.\left(1^2+100+100^2+2^2+2.99+99^2+...+50^2+50.51+51^2\right)\) chia hết cho 101 (1)
Lại có : \(A=\left(1^3+99^3\right)+\left(2^3+98^3\right)+...+\left(50^3+100^3\right)\)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chia hết cho B (đpcm)