Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: - \(x\ge0;y\ge0\)
\(\Rightarrow\left|x+y\right|=\left|x\right|+\left|y\right|=x+y\)
- \(x\le0;y\le0\)
\(\Rightarrow\left|x+y\right|=\left|x\right|+\left|y\right|=-x-y=-\left(x+y\right)\)
- \(x\ge0;y\le0\)
\(\Rightarrow\left|x+y\right|=x+y< x< \left|x\right|+\left|y\right|\)
- \(x\le0;y\ge0\)
\(\Rightarrow\left|x+y\right|=x+y>x>\left|x\right|+\left|y\right|\)
\(\Leftrightarrowđpcm\)
) Thay f(-2) vào hàm số ta có :
y=f(-2)=(-2).(-2)+3=7
Thay f(-1) vào hàm số ta có :
y=f(-1)=(-2).(-1)+3=5
Thay f(0) vào hàm số ta có :
y=f(0)=(-2).0+3=1
Thay f(-1/2) vào hàm số ta có :
y=f(-1/2)=(-2).(-1/2)+3=4
Thay f(1/2) vào hàm số ta có :
y=f(1/2)=(-2).1/2+3=2
b) Thay g(-1) vào hàm số ta có :
y=g(-1)=(-1)2-1=0
Thay g(0) vào hàm số ta có :
y=g(0)=02-1=-1
Thay g(1) vào hàm số ta có :
y=g(1)=12-1=0
Thay g(2) vào hàm số ta có :
y=g(2)=22-1=3
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwweeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrttttttttttttttttttttttttttttttttttttttttttttttttyyyyyyyyyyyyyyyyyyyyyu
vì x - y - z = 0 nên x = y + z
Xét tổng A + B = xyz - xy2 - xz2 + y3 + z3
= ( y + z ) . yz - ( y + z ) . y2 - ( y + z ) . z2 + y3 + z3
= y2z + yz2 - y3 - y2z - yz2 - z3 + y3 + z3 = 0
Vậy ...
Giả sử \(x,y\in Q,x=\frac{a}{b},y=\frac{c}{d},a,b,c,d\in Z;b,d>0\)
a) Nếu \(x>y\), nghĩa là \(\frac{a}{b}>\frac{c}{d}\). Ta có:
\(ad-bc>0.\) Vì \(b>0,d>0,bd>0\) nên
\(\frac{ad-bc}{b.d}>\frac{0}{b.d}=0\Rightarrow\frac{a.d}{b.d}-\frac{b.c}{b.d}>0\\ \Rightarrow\frac{a}{b}-\frac{c}{d}>0,\)
tức là \(x-y>0\)
b) Ngược lại nếu \(x-y>0\), nghĩa là
\(\frac{a}{b}-\frac{c}{d}>0\Rightarrow\frac{a.d}{b.d}-\frac{b.c}{b.d}>0\\ \Rightarrow\frac{a.d-b.c}{b.d}>\frac{0}{b.d}\\ \Rightarrow a.d-b.c>0\Rightarrow a.d>b.c\\ \Rightarrow\frac{a.d}{b.d}>\frac{b.c}{b,d}\Rightarrow\frac{a}{b}>\frac{c}{d}\)
Tức là \(x>y\)