Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
Bài 2:
a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)
Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)
\(\Rightarrow4x+12=6x\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
Vậy x = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)
\(=\frac{14-5}{8}=\frac{9}{8}\)
+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)
+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)
+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)
Vậy ...
c) \(5^x+5^{x+1}+5^{x+2}=3875\)
\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)
\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)
\(\Rightarrow5^x.31=3875\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
Vậy x = 3
1) a) Ta có: \(\frac{x}{-15}=\frac{-60}{x}\) \(\Rightarrow x^2=\left(-15\right).\left(-60\right)=900\)
\(\Rightarrow x=30\)
b) \(\frac{-2}{x}=\frac{-x}{\frac{8}{25}}\) \(\Rightarrow x.\left(-x\right)=\left(-2\right).\frac{8}{25}\)
\(\Rightarrow x.\left(-x\right)=\frac{-16}{25}\)
\(\Rightarrow x.\left(-x\right)=\left(\frac{-4}{5}\right).\frac{4}{5}\)
Vậy \(x=\frac{4}{5}\)
2) a) \(3,8: \left(2x\right)=\frac{1}{4}:2\frac{2}{3}\)
\(\Rightarrow3,8: \left(2x\right)=\frac{3}{32}\)
\(\Rightarrow2x=\frac{3}{32}:3,8=\frac{15}{608}\)
\(x=\frac{15}{608}:2=\frac{15}{1216}\)
Vậy \(x=\frac{15}{1216}\)
b) \(\left(0,25x\right):3=\frac{5}{6}:0,125\)
\(\Rightarrow\left(0,25x\right):3=\frac{20}{3}\)
\(\Rightarrow0,25x=\frac{20}{3}.3=20\)
\(\Rightarrow x=20:0,25=80\)
Vậy x = 80
c) \(0,01:2,5=\left(0,75x\right):0,75\)
\(\Rightarrow\frac{1}{250}=\left(0,75x\right):0,75\)
\(\Leftrightarrow0,75x=\frac{1}{250}.0,75=\frac{3}{1000}\)
\(\Rightarrow x=\frac{3}{1000}:0,75=\frac{1}{250}\)
Vậy \(x=\frac{1}{250}\)
d) \(1\frac{1}{3}:0,8=\frac{2}{3}:\left(0,1x\right)\)
\(\Rightarrow\frac{5}{3}=\frac{2}{3}:\left(0,1x\right)\)
\(\Rightarrow0,1x=\frac{5}{3}.\frac{2}{3}=\frac{10}{9}\)
\(\Rightarrow x=\frac{10}{9}:0,1=\frac{100}{9}\)
Vậy \(x=\frac{100}{9}\)
a) \(\frac{x}{-15}=\frac{-60}{x}\Leftrightarrow x.x=-15.\left(-60\right)\Leftrightarrow x^2=900\Leftrightarrow x^2=\orbr{\begin{cases}30^2\\\left(-30\right)^2\end{cases}}\Leftrightarrow x=\orbr{\begin{cases}30\\-30\end{cases}}\)
Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1
c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1
=> A = 1+bc+b/bc+b+1 = 1
Tk mk nha
BÀI 1:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\) (thay abc = 1)
\(=\frac{a+ab+1}{a+ab+1}=1\)
a) Ta có: \(\frac{3a-b}{a+b}=\frac{3}{4}\Rightarrow\) 12a - 4b = 3a + 3b
\(\Rightarrow\) 9a = 7b
\(\Rightarrow\) \(\frac{a}{b}=\frac{7}{9}\)
b) Bạn tự làm nha, áp dụng tính chất của dãy tỉ số bằng nhau
c) Ta có: \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\) \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Rightarrow\) \(\frac{5}{x}=\frac{1-2y}{8}\)
\(\Rightarrow\) \(\frac{x}{5}=\frac{8}{1-2y}\)
\(\Rightarrow\) \(x=\frac{40}{1-2y}\)
Để x nguyên thì 40/1-2y phải nguyên
\(\Rightarrow\) 1-2y \(\in\) Ư(40)
Mà 1-2y là lẻ nên 1-2y \(\in\) {-5;-1;1;5}
\(\Rightarrow\) y \(\in\) {3;1;0;-2}
Nếu y = 3 thì x = -8
y = 1 thì x = -40
y = 0 thì x = 40
y = -2 thì x = 8
Vậy có 4 cặp x,y thỏa mãn