Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất tia phân giác và tính chất dãy tỉ số bằng nhau ta có:
Từ BE//AC nên chứng minh được DABE cân tại B Þ BE = 4cm
1/
Kẻ AH \(\perp\)CD , \(BK\perp CD\)
Xét tam giác vuông AHD và tam giác vuông BKC, có: góc ADH = góc BCK = 600 ; cạnh AH = BK
=> tam giác AHD = tam giác BKC (gcg)
=> DH = KC
Đặt a = DH (a > 0) => AH = \(\sqrt{1-x^2}\)
Có: Sin60 = \(\frac{AH}{AD}\Rightarrow\frac{\sqrt{3}}{2}=\sqrt{1-x^2}\Rightarrow1-x^2=\frac{3}{4}\Rightarrow x^2=\frac{1}{4}\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\left(n\right)\\x=-\frac{1}{2}\left(l\right)\end{array}\right.\)
=> x = 1/2 hay DH = KC = 1/2
Mặt khác: HK = CD - (DH + KC) = 2,7 - (1/2 + 1/2) = 1,7 (m)
Tứ giác ABCD là hình chữ nhật (góc AHK = góc BKH = ABK = 900) => AB = HK = 1,7 (m)
Vậy AB = 1,7m
2/
a/ Cm: tam giác ICD đều:
Trong tam giác ICD : DB vừa là đường phân giác , vừa là đường cao => tam giác ICD là tam giác cân tại D
=> ID = DC (1)
=> DB vừa là đường trung tuyến => BI = BC = 4cm => IC = 4 + 4 = 8cm (2)
Có: góc IAB = IDC (đồng vị) , góc IBA = góc ICD (đồng vị)
mà góc IDC = góc ICD
=> góc IAB = góc IBA => tam giác IAB cân tại I => IA = IB = 4cm
=> ID = IA + AD = 4 + 4 = 8cm (3)
Từ (1), (2), (3) => ID = DC = IC = 8cm hay tam giác IDC đều
b/ Tính chu vi hình thang ABCD:
Vì tam giác ICD đều => tam giác IAB đều => IA = AB = 4cm
ID = DC = 8cm
Vậy chu vi hình thang ABCD : AB + AD + BC + CD = 4 + 4 + 4 + 8 = 20(cm)
a, ∠ANM = ∠CBN (=90 độ) (chúng ở vị trí đồng vị)
=> MN//BC , theo hệ quả định lý Talet ta có:
AN/AB = MN/BC, cho AB=x (cm) thì AN = x-6 (cm)
Nên: (x-6)/x=1,5/6 => x=8(cm)
Nên AB = 8 cm
b, AD là đường phân giác của tam giác ABC nên:
AB/AC = BD/DC, nếu cho BD=x (cm) thì ta có DC=5-x (cm)
Nên: 4/6=x/(5-x) => 20=10x => x=2 (cm), nên BD= 2 cm
=> DC=3 cm
Theo hình vẽ ta có: AC//BE => ∠ACD = ∠DBE (so le trong)
Xét △BDE và △CDA có:
∠ACD=∠DBE (c/m tr)
∠ADC=∠BDE (đối đỉnh)
=> △BDE=△CDA (g.g)
=> BE/AC = BD/CD => BE/6=2/3 => BE=12:3=4 (cm)
Vậy: BD= 2 cm
BE= 4 cm