Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có
AB = AC (do ∆ABC cân tạiA)
=> AB/2 = AC/2
=> AE = AD
=> ∆AED cân tại A
b) Xét ∆ABK vuông tại K và ∆ACI vuông tại I có
AB= AC
BAC : góc chung
=>∆ABK = ∆ACI (ch-gn)
=> AK = AI (2cạnh t/ứ)
=>∆AKI cân tại A
a) Xét tam giác ABC có:
\(DE//BC\Rightarrow\left\{{}\begin{matrix}\widehat{ADE}=\widehat{ABC}\\\widehat{AED}=\widehat{ACB}\end{matrix}\right.\) (đồng vị)
Mà \(\widehat{ABC}=\widehat{ACB}\)(Tam giác ABC cân tại A)
\(\Rightarrow\widehat{ADE}=\widehat{AED}\) => Tam giác ADE cân tại A
b) Xét tam giác ABE và tam giác ACD có:
\(AB=AC\)(Tam giác ABC cân tại A)
\(\widehat{BAC}\) chung
\(AD=AE\) (Tam giác ADE cân tại A)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Mà \(\widehat{ABC}=\widehat{ACB}\) (Tam giác ABC cân tại A)
\(\Rightarrow\widehat{ABC}-\widehat{ABE}=\widehat{ACB}-\widehat{ACD}\Rightarrow\widehat{OBC}=\widehat{OCB}\)
=> Tam giác OBC cân tại O
Gọi K là giao điểm của DN và BE
Ta có :
ΔBKD vuông tại K có:
^BDK + ^DBK = 90 độ (1)
ΔABC vuông tại A có:
^ABE + ^BEA = 90 độ (2)
Từ (1) và (2)
=> ^BDK = ^BEA = ^IDA (vì BDK và IDA là 2 góc đối đỉnh)
Xét Δ DAI vuông tại A và Δ EAB vuông tại A có:
AD = AE (gt)
^IDA = ^BEA (cmt)
==> Δ DAI = Δ EAB (cạnh góc vuông và góc nhọn kề)
=> AI = AB = AC (2 cạnh tương ứng)
=> A là trung điểm của CI (đpcm)
b) Gọi H là giao điểm của AM và BE
Có :
IK _|_ BE (gt)
AH _|_ BE (gt)
=> IK // AH
hay : IN // AM
Mà :
AI = IC (câu a)
=> MN = MC (hệ quả của tính chất đường trung bình trong tam giác)
Vậy MN = MC
b) Xét ΔEBC vuông tại E và ΔFCB vuông tại F có
BC chung
\(\widehat{ECB}=\widehat{FBC}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔEBC=ΔFCB(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{EBC}=\widehat{FCB}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF(Cạnh huyền-góc nhọn)
Vì \(\Delta ACB\)cân tại A (gt)
=>AB=AC
Vì E và D lần lượt là trung điểm của AB và AC
=>AE=EB
AD=DC
Mà AB=AC
=>AE=AD
=>\(\Delta AED\)cân ở A