Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\Delta ACB\)cân tại A (gt)
=>AB=AC
Vì E và D lần lượt là trung điểm của AB và AC
=>AE=EB
AD=DC
Mà AB=AC
=>AE=AD
=>\(\Delta AED\)cân ở A
a) Xét tam giác ABC có:
\(DE//BC\Rightarrow\left\{{}\begin{matrix}\widehat{ADE}=\widehat{ABC}\\\widehat{AED}=\widehat{ACB}\end{matrix}\right.\) (đồng vị)
Mà \(\widehat{ABC}=\widehat{ACB}\)(Tam giác ABC cân tại A)
\(\Rightarrow\widehat{ADE}=\widehat{AED}\) => Tam giác ADE cân tại A
b) Xét tam giác ABE và tam giác ACD có:
\(AB=AC\)(Tam giác ABC cân tại A)
\(\widehat{BAC}\) chung
\(AD=AE\) (Tam giác ADE cân tại A)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Mà \(\widehat{ABC}=\widehat{ACB}\) (Tam giác ABC cân tại A)
\(\Rightarrow\widehat{ABC}-\widehat{ABE}=\widehat{ACB}-\widehat{ACD}\Rightarrow\widehat{OBC}=\widehat{OCB}\)
=> Tam giác OBC cân tại O
b) Xét ΔEBC vuông tại E và ΔFCB vuông tại F có
BC chung
\(\widehat{ECB}=\widehat{FBC}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔEBC=ΔFCB(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{EBC}=\widehat{FCB}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF(Cạnh huyền-góc nhọn)
Bổ sung đề: D và E lần lượt là trung điểm của AB và AC
a) Ta có: \(AD=DB=\dfrac{AB}{2}\)(D là trung điểm của AB)
\(AE=EC=\dfrac{AC}{2}\)(E là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AD=DB=AE=EC
Xét ΔABE và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
AE=AD(cmt)
Do đó: ΔABE=ΔACD(c-g-c)
b) Ta có: ΔABE=ΔACD(cmt)
nên BE=CD(hai cạnh tương ứng)
c) Xét ΔDBC và ΔECB có
DB=EC(cmt)
\(\widehat{DBC}=\widehat{ECB}\)(hai góc ở đáy của ΔABC cân tại A)
BC chung
Do đó: ΔDBC=ΔECB(c-g-c)
Suy ra: \(\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng)
hay \(\widehat{KBC}=\widehat{KCB}\)
Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)(cmt)
nên ΔKBC cân tại K(Định lí đảo của tam giác cân)
d) Xét ΔABK và ΔACK có
AB=AC(ΔABC cân tại A)AK chung
BK=CK(ΔKBC cân tại K)Do đó: ΔABK=ΔACK(c-c-c)
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)(hai góc tương ứng)
mà tia AK nằm giữa hai tia AB,AC
nên AK là tia phân giác của \(\widehat{BAC}\)(đpcm)
a) Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(gt)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: BN=CM(hai cạnh tương ứng)
b) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
AH chung
HB=HC(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH⊥BC(đpcm)
c) Ta có: AH⊥BC(cmt)
mà H là trung điểm của BC(gt)
nên AH là đường trung trực của BC
⇔EH là đường trung trực của BC
⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)
Xét ΔEBC có EB=EC(cmt)
nên ΔEBC cân tại E(Định nghĩa tam giác cân)
(Hình tự vẽ nhé )
Ta có: Tg ABC cân tại A
=>\(\hept{\begin{cases}AB=AC\left(1\right)\\\widehat{ABC}=\widehat{ACB}\left(2\right)\end{cases}}\)
Xét tg ABC có:
BD là tia phân giác của \(\widehat{ABC}\)=>\(\widehat{ABD}=\widehat{DBC}\)
CE là tia phân giác của \(\widehat{ACB}\)=>\(\widehat{ACE}=\widehat{ECB}\)
Lại có: \(\widehat{ABC}=\widehat{ACB}\)(theo (2))
=>\(\widehat{ACE}=\widehat{ABD}\)(3)
Xét tg ACE và tg ABD có:
AC=AB(theo(1))
\(\widehat{CAB}\): góc chung
\(\widehat{ACE}=\widehat{ABD}\)(theo (3))
=>Tg ABD=tg ACE(g.c.g)
=>AD=AE(2 cạnh tương ứng)
=>Tg AED cân tại A
Vậy tg AED cân tại A
a) Ta có
AB = AC (do ∆ABC cân tạiA)
=> AB/2 = AC/2
=> AE = AD
=> ∆AED cân tại A
b) Xét ∆ABK vuông tại K và ∆ACI vuông tại I có
AB= AC
BAC : góc chung
=>∆ABK = ∆ACI (ch-gn)
=> AK = AI (2cạnh t/ứ)
=>∆AKI cân tại A