K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
MA
0
MA
0
MA
0
25 tháng 9 2019
13.
M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)
\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)
\(=\left(x^2+10x+20\right)^2-16+16\)
\(=\left(x^2+10x+20\right)^2\) là một số chính phương
NV
Nguyễn Việt Lâm
Giáo viên
24 tháng 9 2019
Nhiều quá, nhìn đã thấy ớn lạnh :(
Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.
b ) \(x^2+9y^2-4xy=2xy-\left|x-3\right|\)
\(\Leftrightarrow x^2+9y^2-4xy-2xy+\left|x-3\right|=0\)
\(\Leftrightarrow x^2-6xy+9y^2+\left|x-3\right|=0\)
\(\Leftrightarrow\left(x-3y\right)^2+\left|x-3\right|=0\)
Do \(\left(x-3y\right)^2\ge0;\left|x-3\right|\ge0\forall x;y\)
\(\Rightarrow\left(x-3y\right)^2+\left|x-3\right|\ge0\forall x;y\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y\\x=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=3\end{matrix}\right.\)
Mà \(M=\left(x-4\right)^{2013}+\left(y-1\right)^{2014}\)
\(\Leftrightarrow M=\left(3-4\right)^{2013}+\left(1-1\right)^{2014}\)
\(\Leftrightarrow M=-1^{2013}+0^{2014}\)
\(\Leftrightarrow M=-1+0\)
\(\Leftrightarrow M=-1\)
Vậy \(M=-1\)
\(a+b+c+d=0\)
\(\Leftrightarrow a+b=-\left(c+d\right)\)
\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a=-c^3-d^3-3c^2d-3d^2c\)
\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a+c^3+d^3+3c^2d+3d^2c=0\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(-a^2b-b^2a-c^2d-d^2c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left[-ab\left(a+b\right)-cd\left(c+d\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left[-ab\left(a+b\right)+cd\left(a+b\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(dc-ab\right)\left(a+b\right)\left(đpcm\right)\)