Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ae ơi đề bài lại như này nhé chứng minh a 1 + a2 +....+a99 <1
\(a_k=\frac{2k+1}{k^2\left(k+1\right)^2}=\frac{k^2+2k+1-k^2}{k^2\left(k+1\right)^2}=\frac{\left(k+1\right)^2}{k^2\left(k+1\right)^2}-\frac{k^2}{k^2\left(k+1\right)^2}=\frac{1}{k^2}-\frac{1}{\left(k+1\right)^2}\)
\(S=\frac{1}{1^2}-\frac{1}{\left(1+1\right)^2}+\frac{1}{2^2}-\frac{1}{\left(2+1\right)^2}+\frac{1}{3^2}-\frac{1}{\left(3+1\right)^2}+...+\frac{1}{99^2}-\frac{1}{\left(99+1\right)^2}\)
\(S=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=1-\frac{1}{100^2}< 1\) ( đpcm )
...
Ta có:
N = k4+2k3-16k2-2k+15
=k4+5k3-3k3-15k2-k2-5k+3k+15
=(k3-3k2-k+3)(k+5)
=(k2-1)(k-3)(k+5)
Để \(N⋮16\) thì có nhiều trường hợp xảy ra.
TH1:\(N=0\Leftrightarrow k=\left\{\pm1;3;-5\right\}\)
TH2:Với k lẻ \(\left(k^2-1\right)⋮8\)và cần cm
\(k^2-1=\left(k-1\right)\left(k+1\right)\)
Với k lẻ thì k-1 hoặc k+5 đều chia hết 2
=>N chia hết cho 8*2=16
Vậy \(A⋮16\Leftrightarrow k\) lẻ
a: 3(x-1)-2(x+1)=-3
=>3x-3-2x-2=-3
=>x-5=-3
=>x=2
Thay x=2 vào pt(1), ta được:
\(2m^2+m-6=0\)
=>2m2+4m-3m-6=0
=>(m+2)(2m-3)=0
=>m=-2 hoặc m=3/2
c: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
b) (2k+3)(2k+1)>4k(k+2)
<=> 4k2 + 8k + 3>4k2 + 8k
Chuyển vế và thực hiện phép trừ ta được:
3>0 ( luôn thỏa mãn)
Vậy (2k+3)(2k+1) > 4k(k+2)