Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NÈ BFF CỦA TÔI! GIÚP CHO NÈ
xy=xt
\(\Rightarrow\)\(\frac{x}{z}\)=\(\frac{t}{y}\) ; \(\frac{y}{z}\)=\(\frac{t}{x}\) ; \(\frac{y}{t}\)=\(\frac{z}{x}\) ;\(\frac{x}{t}\)=\(\frac{z}{y}\)
mấy bài sau lm tươg tự z nha!
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=k^2;\frac{a}{c}.\frac{b}{d}=k^2\Rightarrow\frac{a^2}{c^2}=\frac{ab}{c\text{d}}\left(=k^2\right)\)
(Bạn xem cách trình bày có hợp lý không giúp mình nha!)
Lần sau bạn cho thêm cả dấu ngoặc cho dễ hiểu nhé :v
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) \(\left(b,d\ne0\right)\)
Thay \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) vào \(\frac{a^2-b^2}{ab}\) và \(\frac{c^2-d^2}{cd}\) ta có :
\(\left\{{}\begin{matrix}\frac{\left(b.k\right)^2-b^2}{b.k.b}\\\frac{\left(d.k\right)^2-d^2}{d.k.d}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2.k^2-b^2}{b^2.k}\\\frac{d^2.k^2-d^2}{d^2.k}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2\left(k^2-1\right)}{b^2.k}\\\frac{d^2\left(k^2-1\right)}{d^2.k}\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}\frac{k^2-1}{k}\\\frac{k^2-1}{k}\end{matrix}\right.\)(vì b,d khác 0 nên \(b^2,d^2\) khác 0)
=> \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) (vì cùng bằng \(\frac{k^2-1}{k}\))
vậy \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) nếu \(\frac{a}{b}=\frac{c}{d}\)
lâu lắm không làm nên không chắc đâu :v
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)mà\(\frac{a^2}{c^2}=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
a)Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)
Áp dụng dãy tỉ số bằng nhau ta có;
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
=> đpcm
Chúc bạn làm bài tốt
4.9=18.2
5.7=7.5
12.6=36.2
6.48=36.8
k minhf nhes,minhfb keets banj
[ab(ab−2cd)+c2d2].[ab(ab−2)+2(ab+1)]=0[ab(ab−2cd)+c2d2].[ab(ab−2)+2(ab+1)]=0
⇔(ab−cd)2((ab)2+2)=0⇔ab=cd.⇔(ab−cd)2((ab)2+2)=0⇔ab=cd.
Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau tao có
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)
Từ (1) và (2) ta có ĐPCM
ohhhhhh.
Toán 7 à...chưa hề hx lun
bạn ơi cho mình hỏi tỉ thức là j vậy bạn
tuy câu hỏi nó hơi ngu một tý ha ha