K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2016

\(ab=c\)

\(ac=a^2b=4b\)suy ra \(a=\pm2\)

\(a=2\Rightarrow ab=2b=c\Rightarrow bc=2b^2=18\)suy ra \(b=\pm3\)

\(b=3\) thì \(c=6\)và \(b=-3\)thì \(c=-6\)

làm tương tự với \(a=-2\)

Vậy ta có bảng

abc
236
2-3-6
-23-6
-2-36

 

2 tháng 2 2022

a) Vì \(AB=AC\) (giả thiết)

\(\Rightarrow\Delta ABC\) cân tại A

Mà \(AM\) là đường trung tuyến (giả thiết)

\(\Rightarrow AM\) cũng là đường phân giác \(\widehat{A}\) 

b) Vì \(\Delta ABC\) cân tại A (cmt)

Mà \(AM\) là đường phân giác (cmt)

\(\Rightarrow AM\) là đường trung trực \(BC\)

\(\Rightarrow AM\perp BC\)

c) Xét \(\Delta AMC\left(\widehat{M}=90^o\right)\) có:

\(AC^2=AM^2+MC^2\) (định lí pitago)

\(\Rightarrow AM=\sqrt{AC^2-MC^2}=\sqrt{5^2-\left(\dfrac{6}{2}\right)^2}=4\left(cm\right)\)

d) Xét \(\Delta AME\left(\widehat{E}=90^o\right)\) và \(\Delta AMF\left(\widehat{F}=90^o\right)\) có:

\(\widehat{EAM}=\widehat{FAM}\) (do \(AM\) là tia phân giác \(\widehat{EAF}\))

\(AM\) là cạnh chung

\(\Rightarrow\Delta AME=\Delta AMF\left(ch.gn\right)\)

\(\Rightarrow ME=MF\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta MEF\) cân tại \(M\)

2 tháng 2 2022

a, Xét tam giác ABC có : AB = AC 

Vậy tam giác ABC cân tại A

Lại có M là trung điểm BC hay AM là trung tuyến 

=> AM đồng thời là đường phân giác ^A

b, Xét tam giác ABC cân tại A

AM là đường trung tuyến đồng thời là đường cao 

hay AM vuông BC 

c, Vì M là trung tuyến BC => BM = BC/2 = 6/2 = 3 cm 

Theo định lí Pytago tam giác ABM vuông tại M

\(AM=\sqrt{AB^2-BM^2}=4cm\)

d, Xét tan giác AFM và tam giác AEM có : 

^AFM = ^AEM = 900

AM _ chung 

^FAM = ^EAM ( AM là phân giác )

Vậy tam giác AFM = tam giác AEM ( ch - gn ) 

=> FM = EM ( 2 cạnh tương ứng )

Xét tam giác MEF có FM = EM 

Vậy tam giác MEF cân tại M 

Câu b hình như đề sai rồi bạn

17 tháng 5 2022

À mình viết nhầm

10 tháng 8 2016

Toán lớp 7

10 tháng 8 2016

Toán lớp 7

Bạn tự vẽ hình nha!!!

a.

AB // MN 

=> ABE = BEN (2 góc so le trong)

mà ABE = EBN (BD là tia phân giác của ABC)

=> BEN = EBN 

=> Tam giác NBE cân tại N

=> NB = NE.

b.

AB // MN

mà AB _I_ AC
=> AC _I_ MN

Xét tam giác MAN và tam giác MNC có:

MA = MC (M là trung điểm của AC)

AMN = CMN ( = 90 )

MN là cạnh chung 

=> Tam giác MAN = Tam giác MNC (c.g.c)

=> NAC = NCA

c.

AB // MN

=> BAN = ANM (2 góc so le trong) (1)

=> ABN = MNC (2 góc đồng vị)

mà MNC = MNA (tam giác MAN = tam giác MCN)

=> ABN = MNA (2)

Từ (1) và (2)

=> BAN = ABN

=> Tam giác NAB cân tại N 

=> NB = NA 

mà NB = NE (theo câu a)

=> NA = NE

=> Tam giác NAE cân tại N.

       

29 tháng 4 2016

Vẽ hình nhé

a: \(BC=\sqrt{18^2+12^2}=3\sqrt{61}\left(cm\right)\)

b: Vì G là trọng tâm

và AM là đường trung tuyến

nên AG=2/3AM=10(cm)