Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
\(\Rightarrow a=3k;b=4k;c=5k\)
Thay vào biểu thức có :
\(\Rightarrow \frac{5a^2 + 2b^2 -c^2}{2a^2+3b^2-2c^2}\)
\(=\frac{5.(3k)^2+2.(4k)^2-(5k)^2}{2.(3k)^2+3.(4k)^2-2.(5k)^2}\)
Chia cả tử cả mẫu cho \(k^2 \) có giá trị biểu thức là :
\(\frac{5.9+2.16-25}{2.9+3.16-2.25}\)
\(=\frac{52}{16}\)
Câu a, b, c giống dạng nhau nên mình làm một câu a và câu d thôi nha, bạn tham khảo ^^
Giải:
a) \(a=\dfrac{b}{2}=\dfrac{c}{3}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(a=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a-b+c}{1-2+3}=\dfrac{10}{2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}a=5.1=5\\b=2.5=10\\c=3.5=15\end{matrix}\right.\)
b) \(a:b:c=3:4:5\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a^2}{9}=\dfrac{b^2}{16}=\dfrac{c^2}{25}\)
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}=\dfrac{2a^2+2b^2-3c^2}{18+32-75}=\dfrac{-100}{-25}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=\dfrac{4.18}{2}=36\\b^2=\dfrac{4.32}{2}=64\\c^2=\dfrac{4.75}{3}=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\pm6\\b=\pm8\\c=\pm10\end{matrix}\right.\)
Bài 1:
a) Có: 4a = 3b => \(\dfrac{a}{3}=\dfrac{b}{4}\) => \(\dfrac{a}{15}=\dfrac{b}{20}\)
7b = 5c => \(\dfrac{b}{5}=\dfrac{c}{7}\) => \(\dfrac{b}{20}=\dfrac{c}{28}\)
=> \(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}=\dfrac{2a+3b-c}{30+60-28}=\dfrac{186}{62}=3\)
=> \(\left\{{}\begin{matrix}a=45\\b=60\\c=84\end{matrix}\right.\)
b) Tương tự câu a
c) Đặt \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}=k\)
=> \(\left\{{}\begin{matrix}a=2k+1\\b=3k+2\\c=4k+3\end{matrix}\right.\)
Mà a - 2b + 3c = 14 => 2k + 1 - 6k - 4 + 12k + 9 = 8k + 6 = 14 => k = 1
=> \(\left\{{}\begin{matrix}a=3\\b=5\\c=7\end{matrix}\right.\)
d) Từ a:b:c = 3:4:5 => \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\)
=> \(\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)
Mà 2a2 + 2b2 - 3c2 = -100 => 18k2 + 32k2 - 75k2 = -100 => k2 = 4 => k = \(\pm\)2
Với k = 2 => \(\left\{{}\begin{matrix}a=6\\b=8\\c=10\end{matrix}\right.\)
Với k = -2 => \(\left\{{}\begin{matrix}a=-6\\b=-8\\c=-10\end{matrix}\right.\)
Bài 2:
Nửa chu vi hình chữ nhật là: 90:2 = 45 (m)
Tỉ số giữa chiều dài và chiều rộng = \(\dfrac{2}{3}\)=> chiều rộng = \(\dfrac{2}{5}\) nửa chu vi
=> chiều rộng = 18(m) => chiều dài = 27(m)
1) \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{2a^2}{2c^2}=\frac{3b^2}{3d^2}\)\(=\frac{2a^2+3b^2}{2c^2+3d^2}\)( theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\frac{a^2}{c^2}=\frac{2a^2+3b^2}{2c^2+3d^2}\)
2) \(\frac{a}{b}=\frac{c}{d}\)\(=\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}\)( theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\frac{2a-3c}{2b-3d}=\frac{c}{d}\)\(\Rightarrow\frac{2a-3c}{c}=\frac{2b-3d}{d}\)
a)a:b:c=2:4:5 =>\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}\Rightarrow\dfrac{2a}{4}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{2a-b+c}{4-4+5}=\dfrac{7}{5}\)
=>a=\(2\cdot\dfrac{7}{5}=\dfrac{14}{5}\)
\(b=4\cdot\dfrac{7}{5}=\dfrac{28}{5}\)
\(c=5\cdot\dfrac{7}{5}=7\)
Vậy...
b)\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)
\(\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{2c^2}{32}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)
=>a2=16 b2=36 c2=64
=>a=4 b=6 c=8 hoặc a=-4 b=-6 c=-8
Tìm các số a, b, c biết rằng :
1 . Ta có: \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)
Ap dụng tính chất dãy tỉ số bắng nhau ta dược :
\(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)
Nên : a/20=1/3\(\Leftrightarrow\) a=1/3.20 \(\Leftrightarrow\)a=20/3
b/9=1/3 \(\Leftrightarrow\) b=1/3.9 \(\Leftrightarrow\) b=3
c/6=1/3 \(\Leftrightarrow\) c=1/3.6 \(\Leftrightarrow\) c= 2
a:b:c=3:4:5⇒a/3=b/4=c/5=k
⇒a=3k, b=4k, c=5k
2a2+2b2-3c2=-100
⇔2.(3k)2+2.(4k)2-3.(5k)2=-100
⇔2.9k2+2.16k2-3.25k2=-100
⇔18k2+32k2-75k2=-100
⇔ -25k2=-100
⇔k2=4
⇔k=+-2
k=-2⇔a/3=-2⇔a=-6
b/4=-2⇔b=-8
c/5=-2⇔c=-10
k=2⇔a/3=2⇔a=6
b/4=2⇔b=8
c/5=2⇔c=10
Ta có:
a:b:c=3:4:5 => \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\)=> a=3k; b=4k; c=5k
=>\(2a^2=\left(6k\right)^2\text{};2b^2=\left(8k\right)^2;3c^2=\left(15k\right)^2\)
mà theo bài ra ta có: 2a2+2b2-3c2=-100
=> \(6k^2+8k^2-15k^2=-100\)
=> \(\left(6+8-15\right)k^2=-100\)
=>\(\left(-1\right)k^2=-100\)
=>\(k^2=\dfrac{-100}{-1}=100\)
=> k= 10 hoặc k=-10
TH1: a=3.10=30
b=4.10=40
c=5.10=50
TH2: a=3.(-10)=-30
b=4.(-10)=-40
c=5.(-10)=-50