K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

Do \(ab=c^2\)   suy ra:

\(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)

Vậy \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)(đpcm)

13 tháng 12 2017

\(\frac{a^2+c^2}{b^2+c^2}=\frac{ab+a^2}{ab+b^2}\)

                \(=\frac{a\left(a+b\right)}{b\left(a+b\right)}\)

              \(=\frac{a}{b}\)

Vậy \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)

28 tháng 7 2019

Viet lai de bai

Cho \(\frac{a}{b}=\frac{c}{d}\)

CMR:\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)

Bai lam:

Dat \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta co:

\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)

\(\frac{ab}{cd}=\frac{bk\cdot b}{dk\cdot d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)

20 tháng 6 2017

Giải:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a, Ta có: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\) (1)

\(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)

b, Ta có: \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2}{d^2}\) (1)

\(\dfrac{ab}{cd}=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

20 tháng 6 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\left(1\right)\)

a) Thay (1) vào đề:

\(VT=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)

\(VP=\dfrac{bkb}{dkd}=\dfrac{b^2}{d^2}\)

\(\Rightarrow VT=VP\)

\(\Leftrightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\rightarrowđpcm.\)

b) Thay (1) vào đề bài:

\(\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\dfrac{b^2}{d^2}\)

Theo câu a) \(\dfrac{ab}{cd}=\dfrac{b^2}{d^2}\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{ab}{cd}\rightarrowđpcm.\)

19 tháng 6 2016

Bạn xem tại đây Câu hỏi của Quân Nguyễn Anh - Toán lớp 8 - Học toán với OnlineMath