Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\frac{1}{\sqrt[3]{81}}\cdot P=\frac{1}{\sqrt[3]{9\cdot9\cdot\left(a+2b\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(b+2c\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(c+2a\right)}}\)
\(\ge\frac{3}{a+2b+9+9}+\frac{3}{b+2c+9+9}+\frac{3}{c+2a+9+9}\ge3\left(\frac{9}{3a+3b+3c+54}\right)=\frac{1}{3}\)
\(\Rightarrow P\ge\sqrt[3]{3}\)
Dấu bằng xẩy ra khi a=b=c=3
Bài 1:
\(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)
Theo bđt côsi-shaw ta luôn có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge\frac{25}{x+y+z+t+k}\)(x=y=z=t=k>0 ) (*)
\(\Leftrightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)
Áp dụng bđt AM-GM ta có:
\(\hept{\begin{cases}x+y+z+t+k\ge5\sqrt[5]{xyztk}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge5\sqrt[5]{\frac{1}{xyztk}}\end{cases}}\)
\(\Rightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)
\(\Rightarrow\)(*) luôn đúng
Từ (*) \(\Rightarrow\frac{1}{25}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\le\frac{1}{x+y+z+t+k}\)
Ta có: \(P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\)
Mà \(\frac{1}{2a+2b+c}=\frac{1}{a+a+b+b+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\frac{1}{a+2b+2c}=\frac{1}{a+b+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\frac{1}{2a+b+2c}=\frac{1}{a+a+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow P\le\frac{1}{25}\left[5.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=1\)
\(\Rightarrow P\le1\left(đpcm\right)\)Dấu"="xảy ra khi a=b=c\(=\frac{3}{5}\)
\(VT=\frac{a}{a+b+a+c}+\frac{b}{a+b+b+c}+\frac{c}{a+c+b+c}\)
\(VT\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{b+c}\right)=\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c\)
Ta có:
\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)\left(a+c\right)}\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
\(\frac{b}{a+2b+c}=\frac{b}{\left(a+b\right)\left(b+c\right)}\le\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)
\(\frac{c}{a+b+2c}=\frac{c}{\left(a+c\right)\left(b+c\right)}\le\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
Cộng vế theo vế:
=> \(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{1}{4}\left(1+1+1\right)=\frac{3}{4}\)
Dấu "=" xảy ra <=> a = b = c
Cách 1:
Biến đổi tương đương bất đẳng thức cần chứng minh
\(1-\frac{a}{2b+b+c}+1-\frac{b}{a+2b+c}+1-\frac{c}{a+b+2c}\ge\frac{9}{4}\)
\(\Leftrightarrow\frac{a+b+c}{2a+b+c}+\frac{a+b+c}{a+2b+c}+\frac{a+b+c}{a+b+2c}\ge\frac{9}{4}\)
\(\Leftrightarrow4\left(a+b+c\right)\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\ge9\)
Đặt x=2a+b+c; y=a+2b+c; z=a+b+2c => x+y+z=4(a+b+c)
Khi đó đẳng thức trên trở thành
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-2\right)+\left(\frac{y}{z}+\frac{z}{y}-2\right)+\left(\frac{x}{z}+\frac{z}{x}-2\right)\ge0\)
\(\Leftrightarrow\frac{\left(x-y\right)^2}{2xy}+\frac{\left(y-z\right)^2}{2yz}+\frac{\left(z-x\right)^2}{2xz}\ge0\)
BĐT cuối luôn đúng
Vậy BĐT được chứng minh. Dấu "=" xảy ra <=> a=b=c
Cách 2:
Đặt x=2a+b+c; y=a+2b+c; z=a+b+2c
=> \(\hept{\begin{cases}a=\frac{2x-y-z}{4}\\b=\frac{3y-x-z}{4}\\c=\frac{3z-x-y}{4}\end{cases}}\)
BĐT cần chứng minh được viết lại thành
\(\frac{3x-y-z}{4x}+\frac{3y-x-z}{4y}+\frac{3z-x-z}{4z}\le\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{z}{x}\right)\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{z}{x}\ge6\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-2\right)+\left(\frac{y}{z}+\frac{z}{y}-2\right)+\left(\frac{x}{z}+\frac{z}{x}-2\right)\ge0\)
\(\Leftrightarrow\frac{\left(x-y\right)^2}{2xy}+\frac{\left(y-z\right)^2}{2yz}+\frac{\left(z-x\right)^2}{2zx}\ge0\)
BĐT cuối luôn đúng
Vậy BĐT được chứng minh. Dấu "=" <=> a=b=c
Ta có:(Sử dụng bdt cô-si) \(\frac{bc}{a^2b+a^2c}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4bc}}=2.\frac{1}{2a}=\frac{1}{a}\)
=> \(\frac{bc}{a^2b+a^2c}\ge\frac{1}{a}-\frac{b+c}{4bc}\)
Chứng minh tương tự:\(\frac{ca}{b^2a+b^2c}\ge\frac{1}{b}-\frac{c+a}{4ca}\);\(\frac{ab}{c^2a+c^2b}\ge\frac{1}{c}-\frac{a+b}{4ab}\)
Từ đó \(P\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\left(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}\right)\)
Mà\(\frac{b+c}{4bc}+\frac{c+a}{4ca}+\frac{a+b}{4ab}=\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)=> \(P\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge9\)(do a+b+c<=1)=> \(P\ge\frac{1}{2}.9=\frac{9}{2}\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}a+b+c=1\\\frac{bc}{a^2b+a^2c}=\frac{b+c}{4bc}\\a,b,c>0\end{cases}};...\)
<=> \(a=b=c=\frac{1}{3}\)
Vậy\(MinP=\frac{9}{2}\)khi a=b=c=1/3
Với x, y > 0 ta chứng minh:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\\ \Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\\ \Leftrightarrow\left(x+y\right)^2\ge4xy\\ \Leftrightarrow\left(x-y\right)^2\ge0(luônđúng)\)
Dấu "=" xảy ra khi x = y
Áp dụng vào bài toán:
\(\frac{1}{a+b+2c}=\frac{1}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\\ \Rightarrow\frac{4ab}{a+b+2c}\le\frac{ab}{a+c}+\frac{ab}{b+c}\)
Tương tự: \(\frac{4bc}{b+c+2a}\le\frac{bc}{b+a}+\frac{bc}{c+a}\\ \frac{4ca}{c+a+2b}\le\frac{ca}{c+b}+\frac{ca}{a+b}\\ 4\left(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}\right)\le\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{bc+ca}{a+b}=b+a+c\left(dpcm\right)\)
Dấu "=" xảy ra khi a = b = c
Theo e nghĩ là đề phải như này cơ ạ :
\(\frac{a}{\sqrt{b+c+2a}}+\frac{b}{\sqrt{c+a+2b}}+\frac{c}{\sqrt{a+b+2c}}\le\frac{3}{2}\)
Biến đổi và sử dụng Cô - si là sẽ ra :
Ta có : \(\frac{a}{\sqrt{b+c+2a}}+\frac{b}{\sqrt{c+a+2b}}+\frac{c}{\sqrt{a+b+2c}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)+\left(a+c\right)}}+\frac{b}{\sqrt{\left(c+b\right)+\left(a+b\right)}}+\frac{c}{\sqrt{\left(a+c\right)+\left(b+c\right)}}\)
\(=\sqrt{\frac{a.a}{\left(a+b\right)+\left(a+c\right)}}+\sqrt{\frac{b.b}{\left(b+a\right)+\left(b+c\right)}}+\sqrt{\frac{c.c}{\left(c+a\right)+\left(c+b\right)}}\)
\(\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Đề không sai đâu:P
\(VT=\Sigma_{cyc}2\sqrt{\frac{1}{4}.\frac{a}{b+c+2a}}\le\Sigma_{cyc}\left[\frac{1}{4}+\frac{a}{\left(a+b\right)+\left(a+c\right)}\right]\)
\(\le\Sigma_{cyc}\left[\frac{1}{4}+\frac{a}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}\right]=\frac{3}{2}\)
\(\sum\frac{a}{a^2+1+2b+2}\le\sum\frac{a}{2a+2b+2}\)
Nên ta chỉ cần chứng minh: \(\sum\frac{a}{2a+2b+2}\le\frac{1}{2}\Leftrightarrow\sum\frac{a}{a+b+1}\le1\)
\(\Leftrightarrow\sum\frac{b+1}{a+b+1}\ge2\)
Đặt \(P=\sum\frac{b+1}{a+b+1}=\sum\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}=\sum\frac{\left(b+1\right)^2}{ab+a+b^2+2b+1}\)
\(P\ge\frac{\left(a+b+c+3\right)^2}{ab+a+b^2+2b+1+bc+b+c^2+2c+1+ca+c+a^2+2a+1}\)
\(P\ge\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)+6\left(a+b+c\right)+9}{a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3}\)
\(P\ge\frac{2\left(ab+bc+ca\right)+6\left(a+b+c\right)+12}{ab+bc+ca+3\left(a+b+c\right)+6}=2\) (đpcm)
Dấu "=" xảy rakhi \(a=b=c=1\)
\(\frac{a}{b+c+2a}=\frac{a}{\left(a+b\right)+\left(a+c\right)}\le\frac{a}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}\)
Tương tự ta có:
\(\frac{b}{a+c+2b}\le\frac{b}{4\left(a+b\right)}+\frac{b}{4\left(b+c\right)}\)
\(\frac{c}{a+b+2c}\le\frac{c}{4\left(a+c\right)}+\frac{c}{4\left(b+c\right)}\)
Cộng vế theo vế ta có:
\(\frac{a}{b+c+2a}+\frac{b}{a+c+2b}+\frac{c}{a+b+2c}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{c+b}+\frac{c}{a+c}+\frac{c}{b+c}\right)\)
\(=\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{a+c}{a+c}\right)=\frac{3}{4}\)
Dấu "=" xảy ra <=> a = b = c