K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

a) Gọi q là công sai của cấp số nhân. Ta có: \(a;b=aq;c=aq^2\).
\(a^2b^2c^2\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=\dfrac{b^2c^2}{a}+\dfrac{a^2c^2}{b}+\dfrac{a^2b^2}{c}\)
\(=\dfrac{\left(a.q\right)^2\left(a.q^2\right)^2}{a}+\dfrac{a^2\left(aq^2\right)^2}{aq}+\dfrac{a^2\left(aq\right)^2}{aq^2}\)
\(=\dfrac{a^2q^2a^2q^4}{a}+\dfrac{a^2a^2q^4}{aq}+\dfrac{a^2a^2q^2}{aq^2}\)
\(=a^3q^6+a^3q^3+a^3\)
\(=\left(a^2q\right)^3+\left(aq\right)^3+a^3\)
\(=c^3+b^3+a^3=a^3+b^3+c^3\).

24 tháng 5 2017

b) Gọi q là công bội của của cấp số nhân.
Ta có: \(a;b=aq;c=aq^2;d=aq^3\).
\(\left(ab+bc+cd\right)^2=\left(a.aq+aq.aq^2+aq^2.aq^3\right)^2\)
\(=\left(a^2q+a^2q^3+a^2q^5\right)^2=a^4q^2\left(1+q^2+q^4\right)^2\). (1)
\(\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)\)\(=\left(a^2+a^2q^2+a^2q^4\right)\left(a^2q^2+a^2q^4+a^2q^6\right)\)
\(=a^2\left(1+q^2+q^4\right)a^2q^2\left(1+q^2+q^4\right)\)
\(=a^4q^2\left(1+q^2+q^4\right)^2\). (2)
So sánh (1) và (2) ta có điều phải chứng minh.

1: \(Q=\dfrac{ab\left(a-b\right)}{ab}\cdot\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\left(\sqrt{a}+\sqrt{b}\right)^2=a+2\sqrt{ab}+b\)

2: \(=\dfrac{-1+\sqrt{5}-\sqrt{5}+\sqrt{9}-...-\sqrt{2001}+\sqrt{2005}}{4}\)

\(=\dfrac{\sqrt{2005}-1}{4}\)

14 tháng 3 2021

bạn đố thế ai chơi

30 tháng 8 2021

undefined

30 tháng 8 2021

\(VT=\sqrt{\dfrac{a^2b^2}{c\left(a+b+c\right)+ab}}+\sqrt{\dfrac{b^2c^2}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{a^2c^2}{b\left(a+b+c\right)+ac}}\\ VT=\sqrt{\dfrac{a^2b^2}{ac+ab+bc+c^2}}+\sqrt{\dfrac{b^2c^2}{a^2+ac+ab+bc}}+\sqrt{\dfrac{a^2c^2}{ab+bc+b^2+ac}}\\ VT=\sqrt{\dfrac{a^2b^2}{\left(c+a\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2c^2}{\left(b+c\right)\left(a+b\right)}}+\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{bc}{a+b}+\dfrac{bc}{a+c}}{2}\\\sqrt{\dfrac{a^2c^2}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{ca}{a+b}+\dfrac{ca}{b+c}}{2}\\\sqrt{\dfrac{a^2b^2}{\left(b+c\right)\left(a+c\right)}}\le\dfrac{\dfrac{ab}{b+c}+\dfrac{ab}{a+c}}{2}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}\right)+\left(\dfrac{ca}{b+c}+\dfrac{ab}{b+c}\right)+\left(\dfrac{bc}{a+c}+\dfrac{ab}{a+c}\right)}{2}\\ \Rightarrow VT\le\dfrac{a+b+c}{2}=\dfrac{2}{2}=1\)

Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)

28 tháng 7 2017

Đây là toán lớp 8 . I am sorry

19 tháng 8 2017

Mình tìm được 3 số a,b,c thỏa mãn là a = 1, b=1, c= -1/2

Thế vào biểu thức được kết quả là -3/2

14 tháng 3 2021

Áp dụng bđt Schwarz ta có:

\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).

NV
9 tháng 1 2024

\(4\left(a+b+c\right)=a^2+\left(b+c\right)^2\ge\dfrac{1}{2}\left(a+b+c\right)^2\)

\(\Rightarrow a+b+c\le8\)

\(a^2+16-16\ge8a-16\)

\(\Rightarrow P\ge8\left(a+b+c\right)-16+\dfrac{8100}{\sqrt{2a+2b+1}+\sqrt{2c+1}}\)

\(\Rightarrow P\ge8\left(a+b+c\right)-16+\dfrac{48600}{6\sqrt{2a+2b+1}+6\sqrt{2c+1}}\)

\(\Rightarrow P\ge8\left(a+b+c\right)-16+\dfrac{24300}{a+b+c+10}\)

\(\Rightarrow P\ge8\left(a+b+c+10+\dfrac{324}{a+b+c+10}\right)+\dfrac{21708}{a+b+c+10}-96\)

\(\Rightarrow P\ge16.\sqrt{324}+\dfrac{21708}{18}-96=1398\)

Dấu "=" xảy ra tại \(\left(a;b;c\right)=\left(4;0;4\right)\)

6 tháng 5 2017

a)ĐKXĐ:\(a\ge0;a\ne16\)

\(B=\left[\dfrac{3\sqrt{a}}{\sqrt{a}+4}+\dfrac{\sqrt{a}}{\sqrt{a}-4}+\dfrac{4\left(a+2\right)}{16-a}\right]:\left(1-\dfrac{2\sqrt{a}+5}{\sqrt{a}+4}\right)\)

=\(\dfrac{3\sqrt{a}\left(\sqrt{a}-4\right)+\sqrt{a}\left(\sqrt{a}+4\right)-4\left(a+2\right)}{a-16}:\dfrac{\sqrt{a}+4-2\sqrt{a}-5}{\sqrt{a}+4}=\dfrac{3a-12\sqrt{a}+a+4\sqrt{a}-4a-8}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\cdot\dfrac{\sqrt{a}+4}{-\sqrt{a}-1}=\dfrac{-8\sqrt{a}-8}{\left(\sqrt{a}-4\right)\left(-\sqrt{a}-1\right)}=\dfrac{8\left(-\sqrt{a}-1\right)}{\left(\sqrt{a}-4\right)\left(-\sqrt{a}-1\right)}=\dfrac{8}{\sqrt{a}-4}\)

Vậy...

b)Với \(a\ge0;a\ne16\) thì B=\(\dfrac{8}{\sqrt{a}-4}\)

B=-3 thì \(\dfrac{8}{\sqrt{a}-4}=-3\)

=>\(9=-3\sqrt{a}+24\)

<=>-15=-3\(\sqrt{a}\)

<=>\(\sqrt{a}=5\)

<=>a=25(TM)

Vậy a=25 thì B=-3

c)Với \(a\ge0;a\ne16\) thì B=\(\dfrac{8}{\sqrt{a}-4}\)

Để B nguyên thì \(\dfrac{8}{\sqrt{a}-4}\)phải nguyên<=>8 chia hết cho \(\sqrt{a}-4\)
<=>\(\sqrt{a}-4\)là Ư(8)
Mà Ư(8)={-8;-4;-2;-1;1;2;4;8}
Do \(\sqrt{a}\ge0\) ta có bảng sau:
\(\sqrt{a}-4\) -8 -4 -2 -1 1 2 4
8
\(\sqrt{a}\) -4(L) 0 2 3 5 6 8 12

\(\sqrt{a}\) 0 2 3 5 6 8 12
a 0(TM) 4(TM) 9(TM) 25(TM) 36(TM) 64(TM) 144(TM)

(BẠN KẺ 1 BẢNG 3 HÀNG THÔI NHA,MÌNH KẺ LỖI NÊN LÀM 2 BẢNG)

Vậy...

8 tháng 5 2017

cảm ơn bạn nha hihi

NV
30 tháng 7 2021

Đặt vế trái là P

Ta có:

\(\dfrac{a}{b^3+ab}=\dfrac{a}{b\left(a+b^2\right)}=\dfrac{1}{b}-\dfrac{b}{a+b^2}\ge\dfrac{1}{b}-\dfrac{b}{2\sqrt{ab^2}}=\dfrac{1}{b}-\dfrac{1}{2\sqrt{a}}\ge\dfrac{1}{b}-\dfrac{1}{4}\left(\dfrac{1}{a}+1\right)\)

Tương tự và cộng lại:

\(P\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+3\right)\)

\(P\ge\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-\dfrac{3}{4}\ge\dfrac{3}{4}.\dfrac{9}{a+b+c}-\dfrac{3}{4}=\dfrac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)