Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\sqrt{\dfrac{a^2b^2}{c\left(a+b+c\right)+ab}}+\sqrt{\dfrac{b^2c^2}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{a^2c^2}{b\left(a+b+c\right)+ac}}\\ VT=\sqrt{\dfrac{a^2b^2}{ac+ab+bc+c^2}}+\sqrt{\dfrac{b^2c^2}{a^2+ac+ab+bc}}+\sqrt{\dfrac{a^2c^2}{ab+bc+b^2+ac}}\\ VT=\sqrt{\dfrac{a^2b^2}{\left(c+a\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2c^2}{\left(b+c\right)\left(a+b\right)}}+\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng BĐT Cauchy-Schwarz:
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{bc}{a+b}+\dfrac{bc}{a+c}}{2}\\\sqrt{\dfrac{a^2c^2}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{ca}{a+b}+\dfrac{ca}{b+c}}{2}\\\sqrt{\dfrac{a^2b^2}{\left(b+c\right)\left(a+c\right)}}\le\dfrac{\dfrac{ab}{b+c}+\dfrac{ab}{a+c}}{2}\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}\right)+\left(\dfrac{ca}{b+c}+\dfrac{ab}{b+c}\right)+\left(\dfrac{bc}{a+c}+\dfrac{ab}{a+c}\right)}{2}\\ \Rightarrow VT\le\dfrac{a+b+c}{2}=\dfrac{2}{2}=1\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)
Áp dụng bđt Schwarz ta có:
\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).
\(4\left(a+b+c\right)=a^2+\left(b+c\right)^2\ge\dfrac{1}{2}\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\le8\)
\(a^2+16-16\ge8a-16\)
\(\Rightarrow P\ge8\left(a+b+c\right)-16+\dfrac{8100}{\sqrt{2a+2b+1}+\sqrt{2c+1}}\)
\(\Rightarrow P\ge8\left(a+b+c\right)-16+\dfrac{48600}{6\sqrt{2a+2b+1}+6\sqrt{2c+1}}\)
\(\Rightarrow P\ge8\left(a+b+c\right)-16+\dfrac{24300}{a+b+c+10}\)
\(\Rightarrow P\ge8\left(a+b+c+10+\dfrac{324}{a+b+c+10}\right)+\dfrac{21708}{a+b+c+10}-96\)
\(\Rightarrow P\ge16.\sqrt{324}+\dfrac{21708}{18}-96=1398\)
Dấu "=" xảy ra tại \(\left(a;b;c\right)=\left(4;0;4\right)\)
\(\dfrac{a^2+bc}{b+c}=\dfrac{\left(a+b\right)\left(a+c\right)-a\left(b+c\right)}{b+c}=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}-a\)
\(\Rightarrow VT=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}-\left(a+b+c\right)\)
Mặt khác áp dụng \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Rightarrow\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge a+b+b+c+a+c=2\left(a+b+c\right)\)
\(\Rightarrow VT\ge2\left(a+b+c\right)-\left(a+b+c\right)=a+b+c\) (đpcm)
Đặt vế trái là P
Ta có:
\(\dfrac{a}{b^3+ab}=\dfrac{a}{b\left(a+b^2\right)}=\dfrac{1}{b}-\dfrac{b}{a+b^2}\ge\dfrac{1}{b}-\dfrac{b}{2\sqrt{ab^2}}=\dfrac{1}{b}-\dfrac{1}{2\sqrt{a}}\ge\dfrac{1}{b}-\dfrac{1}{4}\left(\dfrac{1}{a}+1\right)\)
Tương tự và cộng lại:
\(P\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+3\right)\)
\(P\ge\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-\dfrac{3}{4}\ge\dfrac{3}{4}.\dfrac{9}{a+b+c}-\dfrac{3}{4}=\dfrac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\ge\sqrt[]{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
Do đó:
\(VT\le\dfrac{2a^3}{2\sqrt{a^6bc}}+\dfrac{2b^3}{2\sqrt{b^6ac}}+\dfrac{2c^3}{2\sqrt{c^3ab}}=\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{abc}}=\dfrac{\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}{abc}\)
\(\le\dfrac{a^2+b^2+c^2}{abc}=\dfrac{a}{bc}+\dfrac{b}{ca}+\dfrac{c}{ab}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
a) Gọi q là công sai của cấp số nhân. Ta có: \(a;b=aq;c=aq^2\).
\(a^2b^2c^2\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=\dfrac{b^2c^2}{a}+\dfrac{a^2c^2}{b}+\dfrac{a^2b^2}{c}\)
\(=\dfrac{\left(a.q\right)^2\left(a.q^2\right)^2}{a}+\dfrac{a^2\left(aq^2\right)^2}{aq}+\dfrac{a^2\left(aq\right)^2}{aq^2}\)
\(=\dfrac{a^2q^2a^2q^4}{a}+\dfrac{a^2a^2q^4}{aq}+\dfrac{a^2a^2q^2}{aq^2}\)
\(=a^3q^6+a^3q^3+a^3\)
\(=\left(a^2q\right)^3+\left(aq\right)^3+a^3\)
\(=c^3+b^3+a^3=a^3+b^3+c^3\).
b) Gọi q là công bội của của cấp số nhân.
Ta có: \(a;b=aq;c=aq^2;d=aq^3\).
\(\left(ab+bc+cd\right)^2=\left(a.aq+aq.aq^2+aq^2.aq^3\right)^2\)
\(=\left(a^2q+a^2q^3+a^2q^5\right)^2=a^4q^2\left(1+q^2+q^4\right)^2\). (1)
\(\left(a^2+b^2+c^2\right)\left(b^2+c^2+d^2\right)\)\(=\left(a^2+a^2q^2+a^2q^4\right)\left(a^2q^2+a^2q^4+a^2q^6\right)\)
\(=a^2\left(1+q^2+q^4\right)a^2q^2\left(1+q^2+q^4\right)\)
\(=a^4q^2\left(1+q^2+q^4\right)^2\). (2)
So sánh (1) và (2) ta có điều phải chứng minh.
Mẫu số to quá nên ko nghĩ ra cách giải đẹp mắt:
Dự đoán dấu "=" xảy ra tại \(a=b=c=1\), ta cần c/m: \(A\le\dfrac{3}{16}\)
Do \(\sum\dfrac{a+1}{a^2+1+10a+20}\le\sum\dfrac{a+1}{2a+10a+20}=\sum\dfrac{a+1}{12a+20}\)
Nên ta chỉ cần chứng minh: \(\sum\dfrac{a+1}{3a+5}\le\dfrac{3}{4}\Leftrightarrow\sum\left(\dfrac{3a+3}{3a+5}-1\right)\le\dfrac{9}{4}-3\)
\(\Leftrightarrow\sum\dfrac{1}{3a+5}\ge\dfrac{3}{8}\Leftrightarrow\dfrac{3\left(ab+bc+ca\right)+10\left(a+b+c\right)+25}{\left(3a+5\right)\left(3b+5\right)\left(3c+5\right)}\ge\dfrac{1}{8}\) (quy đồng)
\(\Leftrightarrow\dfrac{4\left(a+b+c\right)+3\left(ab+bc+ca+2\left(a+b+c\right)\right)+25}{27abc+45\left(ab+bc+ca+2\left(a+b+c\right)\right)-15\left(a+b+c\right)+125}\ge\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4\left(a+b+c\right)+52}{27abc-15\left(a+b+c\right)+530}\ge\dfrac{1}{8}\)
\(\Leftrightarrow47\left(a+b+c\right)\ge27abc+114\)
Điều này đúng do:
\(9=2\left(a+b+c\right)+ab+bc+ca\le2\left(a+b+c\right)+\dfrac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow\left(a+b+c-3\right)\left(a+b+c+9\right)\ge0\)
\(\Rightarrow a+b+c\ge3\)
Và: \(9=a+b+c+a+b+c+ab+bc+ca\ge9\sqrt[9]{a^4b^4c^4}\)
\(\Rightarrow abc\le1\)
\(\Rightarrow\left\{{}\begin{matrix}47\left(a+b+c\right)\ge141\\27abc+114\le27+114=141\end{matrix}\right.\) (đpcm)