K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{a^4}{(a+2)(b+2)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}\geq 4\sqrt[4]{\frac{a^4}{27.27.9}}=\frac{4a}{9}\)

\(\frac{b^4}{(b+2)(c+2)}+\frac{b+2}{27}+\frac{c+2}{27}+\frac{1}{9}\geq \frac{4b}{9}\)

\(\frac{c^4}{(c+2)(a+2)}+\frac{c+2}{27}+\frac{a+2}{27}+\frac{1}{9}\geq \frac{4c}{9}\)

Cộng theo vế và rút gọn:

\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}+\frac{2(a+b+c)}{27}+\frac{7}{9}\geq\frac{4(a+b+c)}{9}\)

\(\frac{a^4}{(a+2)(b+2)}+\frac{b^4}{(b+2)(c+2)}+\frac{c^4}{(c+2)(a+2)}\geq \frac{10(a+b+c)}{27}-\frac{7}{9}=\frac{30}{27}-\frac{7}{9}=\frac{1}{3}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

25 tháng 12 2018

AM-GM là gì z bn

5 tháng 5 2019

bạn làm được bài nảy chưa ? chỉ mình với

21 tháng 7 2018

Chắc đề bị nhầm rồi.

\(\dfrac{a}{\sqrt{b+1}}+\dfrac{b}{\sqrt{c+1}}+\dfrac{c}{\sqrt{a+1}}\ge2\sqrt{2}\left(\dfrac{a}{3+b}+\dfrac{b}{3+c}+\dfrac{c}{3+a}\right)\)

\(\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{3\left(a+b+c\right)+\left(ab+bc+ca\right)}\ge2\sqrt{2}.\dfrac{9}{9+\dfrac{\left(a+b+c\right)^2}{3}}=2\sqrt{2}.\dfrac{9}{12}=\dfrac{3}{\sqrt{2}}\)

5 tháng 8 2018

uh, mk cx nghĩ zậy

4 tháng 8 2018

Bài 1

\(\dfrac{a}{a+1}+\dfrac{b}{b+1}+\dfrac{c}{c+1}=a-\dfrac{a^2}{a+1}+b-\dfrac{b^2}{b+1}+c-\dfrac{c^2}{c+1}\)

\(=1-\left(\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}+\dfrac{c^2}{c+1}\right)\)

Áp dụng bđt Cauchy dạng phân thức \(\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}+\dfrac{c^2}{c+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{1}{1+3}=\dfrac{1}{4}\)

\(\Rightarrow1-\left(\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}+\dfrac{c^2}{c+1}\right)\le1-\dfrac{1}{4}=\dfrac{3}{4}\)

\(\Rightarrow GTLN=\dfrac{3}{4}\) Dấu ''='' xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Bài 2

\(P=\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}=\dfrac{a}{b^2+1}+\dfrac{1}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{1}{c^2+1}+\dfrac{c}{a^2+1}+\dfrac{1}{a^2+1}\)

Xét \(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}=a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{a^2c}{a^2+1}\)

Xét \(\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}+\dfrac{1}{a^2+1}=1-\dfrac{b^2}{b^2+1}+1-\dfrac{c^2}{c^2+1}+1-\dfrac{a^2}{a^2+1}\)

\(\Rightarrow P=6-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}+\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\right)\)

Áp dụng bđt Cauchy cho 2 số thực dương ta có \(b^2+1\ge2b\Rightarrow\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\)

\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ac}{2}\)

Theo hệ quả của bđt Cauchy ta có \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow3\ge ab+bc+ac\) \(\Rightarrow\dfrac{3}{2}\ge\dfrac{ab+bc+ac}{2}\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{3}{2}\)

Áp dụng bđt Cauchy cho 2 số thực dương ta có \(a^2+1\ge2a\Rightarrow\dfrac{a^2}{a^2+1}\le\dfrac{a^2}{2a}=\dfrac{a}{2}\)

\(\Rightarrow\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\le\dfrac{a+b+c}{2}=\dfrac{3}{2}\)

\(\Rightarrow P\ge6-\left(\dfrac{3}{2}+\dfrac{3}{2}\right)=3\left(đpcm\right)\)

Dấu ''='' xảy ra khi \(a=b=c=1\)

Bài 1 : Ta có : \(\dfrac{a}{a+1}+\dfrac{b}{b+1}+\dfrac{c}{c+1}=\dfrac{a^2}{a^2+a}+\dfrac{b^2}{b^2+b}+\dfrac{c^2}{c^2+c}\)

Theo BĐT CÔ - SI dưới dạng engel ta có :

\(\dfrac{a^2}{a^2+a}+\dfrac{b^2}{b^2+b}+\dfrac{c^2}{c^2+c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+\left(a+b+c\right)}=\dfrac{1}{a^2+b^2+c^2+1}\le\dfrac{1}{\dfrac{1}{a+b+c}+1}=\dfrac{1}{\dfrac{1}{3}+1}=\dfrac{4}{3}\)

Híc híc rối nùi luôn rồi , chắc sai ...

22 tháng 2 2018

Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)

                                      \(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)

                                        \(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)

Cộng 3 cái vào, ta có 

A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)

Vậy A min = 24 

Neetkun ^^

22 tháng 2 2018

bạn tìm ra dấu= xảy ra khi nào

30 tháng 6 2018

Bài 2:

Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+xz\), ta có:

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)

Lại áp dụng tương tự ta có:

\(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge ab^2c+abc^2+a^2bc\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (2)

Từ (1) và (2) suy ra:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

30 tháng 6 2018

Bài 1:

Áp dụng BĐT Cô -si, ta có:

\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)

\(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\sqrt[3]{\dfrac{b^2}{c^3}.\dfrac{1}{b}.\dfrac{1}{b}}=\dfrac{3}{c}\)

\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)

Cộng vế theo vế ta được:

\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

p/s: không chắc lắm, có gì sai xót xin giúp đỡ

4 tháng 6 2018

\(\frac{1}{a^2+b^2+2}+\frac{1}{c^2+b^2+2}+\frac{1}{a^2+c^2+2}\le\frac{3}{4}\)

\(\Leftrightarrow\frac{a^2+b^2}{a^2+b^2+2}+\frac{b^2+c^2}{b^2+c^2+2}+\frac{c^2+a^2}{c^2+a^2+2}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)

\(\ge\frac{\sqrt{3\left(a^2b^2+b^2c^2+c^2a^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)

\(\ge\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)

Cần chứng minh \(\frac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*