\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2019

@Nguyễn Việt Lâm

19 tháng 10 2019

@Lê Thị Thục Hiền

AH
Akai Haruma
Giáo viên
30 tháng 12 2019

Đề thiếu. Bạn xem lại đề.

27 tháng 9 2019

\(\sqrt{a+b}.\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}\)

\(=\sqrt{2+\frac{a}{b}+\frac{b}{a}}\ge\sqrt{2+2\sqrt{\frac{a}{b}.\frac{b}{a}}}=\sqrt{2+2}=2\)

Dấu bằng xảy ra khi a = b.

14 tháng 8 2019

Áp dụng bất đẳng thức Bunhiacopxki :

\(\left(1^2+4^2\right)\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)

\(\Leftrightarrow17\cdot\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)

\(\Leftrightarrow\sqrt{17}\cdot\sqrt{a^2+\frac{1}{b^2}}\ge a+\frac{4}{b}\)

Tương tự ta có :

\(\sqrt{17}\cdot\sqrt{b^2+\frac{1}{c^2}}\ge b+\frac{4}{c}\)

\(\sqrt{17}\cdot\sqrt{c^2+\frac{1}{a^2}}\ge c+\frac{4}{a}\)

Cộng theo vế của 3 bđt ta được :

\(\sqrt{17}\cdot\left(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\right)\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

\(\Leftrightarrow\sqrt{17}\cdot A\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

Áp dụng bất đẳng thức Cô-si :

\(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

\(=16a+\frac{4}{a}+16b+\frac{4}{b}+16c+\frac{4}{c}-15a-15b-15c\)

\(\ge2\sqrt{\frac{4\cdot16a}{a}}+2\sqrt{\frac{4\cdot16b}{b}}+2\sqrt{\frac{4\cdot16c}{c}}-15\left(a+b+c\right)\)

\(\ge16+16+16-15\cdot\frac{3}{2}=\frac{51}{2}\)

Do đó : \(\sqrt{17}\cdot A\ge\frac{51}{2}\)

\(\Leftrightarrow A\ge\frac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)

1 tháng 1 2020

1/ a/dung bđt Cauchy - Schwarz dạng phân thức: \(\frac{a^2}{b+3c}+\frac{b^2}{c+3a}+\frac{c^2}{a+3b}\ge\frac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\frac{a+b+c}{4}=\frac{3}{4}\)

2/ a/dung bđt bunhiacopxki :

\(S^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=3\cdot2\left(a+b+c\right)=6\cdot6=36\)

=> \(S\le6\)

16 tháng 7 2017

IMG20170716142429 - Up ảnh nhanh vào lick đó nha

 

4 tháng 11 2018

we have that: \(\sqrt{a^4+b^2+c^2+1}=\sqrt{a^4-a^2+2}\)

and \(\dfrac{-a^2+11}{8}\le\sqrt{a^4-a^2+2}\le\sqrt{2}\) \(\left(a\in\left(0;1\right)\right)\)

25 tháng 10 2017

\(P=\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{c^2+\dfrac{1}{c^2}}\)

\(\Leftrightarrow\sqrt{\dfrac{97}{4}}P=\sqrt{4+\dfrac{81}{4}}\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{4+\dfrac{81}{4}}\sqrt{b^2+\dfrac{1}{b^2}}+\sqrt{4+\dfrac{81}{4}}\sqrt{c^2+\dfrac{1}{c^2}}\)

\(\ge\left(2a+\dfrac{9}{2a}\right)+\left(2b+\dfrac{9}{2b}\right)+\left(2c+\dfrac{9}{2c}\right)\)

\(=2\left(a+b+c\right)+\dfrac{9}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\ge4+\dfrac{9}{2}.\dfrac{9}{a+b+c}=4+\dfrac{81}{4}=\dfrac{97}{4}\)

\(\Rightarrow P\ge\sqrt{\dfrac{97}{4}}\)

PS: Lần sau chép đề cẩn thận nhé bạn.