K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

b: ta có: ΔBAD=ΔBED

nên BA=BE

hay ΔBAE cân tại B

c: Ta có: BA=BE

DA=DE

Do đó: BD là đường trung trực của AE
hay BD⊥AE

16 tháng 12 2023

a) Ta có:

- Góc ABD là góc giữa hai phân giác của góc ABC, nên ABD = CBD.

- Góc EBD là góc giữa phân giác của góc ABC và đường thẳng DE, nên EBD = CBD.

Vậy tam giác ABD = tam giác EBD.

 

b) Ta có:

- Góc ABD = góc EBD (do chứng minh ở câu a).

- Góc ADB = góc EDB (do cùng là góc vuông).

- Vậy tam giác ABD = tam giác EBD (do hai góc bằng nhau và góc giữa hai cạnh bằng nhau).

- Do đó, BD vuông góc với AE.

- Ta có AE cắt BD tại I, vậy I là trung điểm của AE.

 

c) Ta có:

- Tia Cx vuông góc với tia BD tại H.

- Trên tia đối của tia AB, lấy điểm F sao cho AF = EC.

- Ta cần chứng minh 3 điểm C, H, F thẳng hàng và AE // FC.

- Vì AF = EC và tam giác ABD = tam giác EBD (do chứng minh ở câu a), nên tam giác AFB = tam giác EFC (do hai cạnh bằng nhau và góc giữa hai cạnh bằng nhau).

- Vậy 3 điểm C, H, F thẳng hàng và AE // FC.

16 tháng 12 2023

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED

=>BA=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

Ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm I của AE

c: Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF

Ta có: BD\(\perp\)AE

AE//CF

Do đó: BD\(\perp\)CF

mà BD\(\perp\)CH

và CH,CF có điểm chung là C

nên C,H,F thẳng hàng

17 tháng 12 2023

loading... 

17 tháng 12 2023

loading... 

7 tháng 3 2022

ui nay chị làm hình học 7 nx :))

31 tháng 12 2023

 

e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ  ( 1 ) và ( 2 ) => B, D , M thằng hàng

 

 

13 tháng 5 2018

ABCDIE12

1) Xét hai tam giác ABI và EBI có:

AB = EB (gt)

B1ˆ=B2ˆ(gt)B1^=B2^(gt)

BI: cạnh chung

Vậy: ΔABI=ΔEBI(c−g−c)ΔABI=ΔEBI(c−g−c)

Suy ra: BAIˆ=BEIˆBAI^=BEI^ (hai góc tương ứng)

Mà BAIˆ=90oBAI^=90o

Do đó: BEIˆ=90oBEI^=90o

2) Xét hai tam giác vuông AID và EIC có:

IA = IE (ΔABI=ΔEBIΔABI=ΔEBI)

AIDˆ=EICˆAID^=EIC^ (đối đỉnh)

Vậy: ΔAID=ΔEIC(cgv−gn)ΔAID=ΔEIC(cgv−gn)

Suy ra: ID = IC (hai cạnh tương ứng)

Do đó: ΔIDCΔIDC cân tại I

3) Ta có: AB = EB (gt)

⇒ΔABE⇒ΔABE cân tại B

⇒⇒ BI là đường phân giác đồng thời là đường trung trực AE

hay BI ⊥⊥ AE (1)

Ta lại có: AB = EB (gt)

AD = EC (ΔAID=ΔEICΔAID=ΔEIC)

=> BD = BC

=> ΔBDCΔBDC cân tại B

=> BI là đường phân giác đồng thời là đường cao của tam giác

hay BI ⊥⊥ DC (2)

Từ (1) và (2) suy ra: AE // DC (đpcm)

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAE cân tại B

mà BM là phân giác

nên BM vuông góc AE tại M và M là trung điểm của AE