K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

a, \(AB=\tan C\cdot AC=\dfrac{\sqrt{3}}{3}\cdot16=\dfrac{16\sqrt{3}}{3}\left(cm\right)\)

\(BC=\sqrt{AB^2+AC^2}=\dfrac{32\sqrt{3}}{3}\left(cm\right)\left(pytago\right)\)

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có 

\(AB=AC\cdot\tan30^0\)

\(\Leftrightarrow AB=10\cdot\dfrac{\sqrt{3}}{3}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=10^2+\left(\dfrac{10\sqrt{3}}{3}\right)^2=\dfrac{400}{3}\)

hay \(BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)

a: \(AC=BC\cdot\sin\widehat{B}=60\cdot\dfrac{1}{2}=30\left(cm\right)\)

\(AB=\sqrt{60^2-30^2}=30\sqrt{3}\)

b: \(AC=BC\cdot\cos\widehat{C}=106\cdot\dfrac{1}{2}=53\left(cm\right)\)

\(AB=\sqrt{106^2-53^2}=53\sqrt{3}\left(cm\right)\)

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=50^0\)

Xét ΔABC vuông tại A có 

\(AB=BC\cdot\sin\widehat{C}\)

\(\Leftrightarrow AB=20\cdot\sin50^0\)

hay \(AB\simeq15,32\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=20^2-15.32^2=165.2976\)

hay \(AC\simeq12,86\left(cm\right)\)

3 tháng 7 2015

Trong này ít bạn lớp 9 lắm

3 tháng 7 2015

nguyễn nam cao trả lời câu nào cũng có người tick đúng đó

2 tháng 10 2021

\(BC=\sqrt{AB^2+AC^2}=2\sqrt{89}\left(cm\right)\left(pytago\right)\\ \sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{16}{2\sqrt{89}}=\dfrac{8\sqrt{89}}{89}\\ \cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{10}{2\sqrt{89}}=\dfrac{5\sqrt{89}}{89}\\ \tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{16}{10}=1,6\\ \cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{10}{16}=0,625\)

2 tháng 10 2021

Xét tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(pytago\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{10^2+16^2}=2\sqrt{89}\left(cm\right)\)

Áp dụng tslg trong tam giác ABC vuông tại A:

\(\left\{{}\begin{matrix}sinB=\dfrac{AC}{BC}=\dfrac{16}{2\sqrt{89}}=\dfrac{8\sqrt{89}}{89}\\cosB=\dfrac{AB}{BC}=\dfrac{10}{2\sqrt{89}}=\dfrac{5\sqrt{89}}{89}\\tanB=\dfrac{AC}{AB}=\dfrac{16}{10}=\dfrac{8}{5}\\cotB=\dfrac{AB}{AC}=\dfrac{10}{16}=\dfrac{5}{8}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}sinC=\dfrac{AB}{BC}=\dfrac{10}{2\sqrt{89}}=\dfrac{5\sqrt{89}}{89}\\cosC=\dfrac{AC}{BC}=\dfrac{16}{2\sqrt{89}}=\dfrac{8\sqrt{89}}{89}\\tanC=\dfrac{AB}{AC}=\dfrac{10}{16}=\dfrac{5}{8}\\cotC=\dfrac{AC}{AB}=\dfrac{16}{10}=\dfrac{8}{5}\end{matrix}\right.\)

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)