Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔCDH vuông tại D và ΔCEA vuông tại E có
góc DCH chung
Do đó: ΔCDH\(\sim\)ΔCEA
Suy ra: CD/CE=CH/CA
hay \(CD\cdot CA=CH\cdot CE\)
Xét ΔBEH vuông tại E và ΔBDA vuông tại D có
góc EBH chung
Do đó: ΔBEH\(\sim\)ΔBDA
SUy ra: BE/BD=BH/BA
hay \(BE\cdot BA=BH\cdot BD\)
Xét ΔBIH vuông tại I và ΔBDC vuông tại D có
góc DBC chung
Do đó: ΔBIH\(\sim\)ΔBDC
Suy ra: BI/BD=BH/BC
hay \(BD\cdot BH=BI\cdot BC\)
hay \(BE\cdot BA=BI\cdot BC\)
Xét ΔCHI vuông tại I và ΔCBE vuông tại E có
góc BCE chung
Do đó: ΔCHI\(\sim\)ΔCBE
Suy ra: CH/CB=CI/CE
hay \(CH\cdot CE=CI\cdot CB\)
=>\(CI\cdot CB=CD\cdot CA\)
\(CD\cdot CA+BE\cdot BA=BI\cdot BC+CI\cdot BC=BC^2\)
a: Xét tứ giác ADHE có \(\widehat{ADH}+\widehat{AEH}=180^0\)
nên ADHE là tứ giác nội tiếp
Xét tứ giác ADIB có \(\widehat{ADB}=\widehat{AIB}=90^0\)
nên ADIB là tứ giác nội tiếp
a: Xét (O) có
ΔBEC nội tiếpBC là đường kính
Do đó: ΔBEC vuông tại E
Xét (O) có
ΔBDC nội tiếpBC là đường kính
Do đó: ΔBDC vuông tại D
Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại H
Do đó: AH⊥BC
b: Xét tứ giác AMON có
\(\widehat{AMO}+\widehat{ANO}=180^0\)
Do đó: AMON là tứ giác nội tiếp(1)
Xét tứ giác AKON có
\(\widehat{AKO}+\widehat{ANO}=180^0\)
Do đó: AKON là tứ giác nội tiếp(2)
Từ (1), (2) suy ra AMKN là tứ giác nội tiếp
Suy ra: \(\widehat{AKN}=\widehat{AMN}=\widehat{ANM}\)
Lời giải:
a)
Ta thấy \(\widehat{BDC}=\widehat{BEC}=90^0\) (góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow BD\perp AC,CE\perp AB\)
Mà $BD,CE$ giao nhau tại $H$ nên $H$ là trực tâm của tam giác $ABC$
\(\Rightarrow AH\perp BC\) hay $AI\perp BC$
Từ $AI\perp BC,BD\perp AC, CE\perp AB$:
Xét tứ giác $ADHE$ có tổng 2 góc đối nhau \(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\) nên $ADHE$ là tứ giác nội tiếp.
Xét tứ giác $ADIB$ có \(\widehat{ADB}=\widehat{AIB}(=90^0)\) và 2 góc này cùng nhìn cạnh $AB$ nên $ADIB$ là tứ giác nội tiếp.
b)
Vì $ADIB$ là tứ giác nội tiếp nên \(CD.CA=CI.CB(1)\)
Hoàn toàn tương tự như $ADIB$ thì $AEIC$ cũng là tứ giác nội tiếp
\(\Rightarrow BE.BA=BI.BC(2)\)
Lấy \((1)+(2)\Rightarrow CD.CA+BE.BA=CI.CB+BI.BC=BC(CI+BI)=BC^2\)
Ta có đpcm.
c)
Gọi $H',U$ lần lượt là giao của $MN$ và $AI,AO$
Ta có: \(\widehat{H'IO}=\widehat{AIO}=90^0(3)\)
Theo tính chất 2 tiếp tuyến cắt nhau: \(AM=AN, OM=ON\Rightarrow AO\) là trung trực của $MN$. Do đó \(AO\perp MN\) tại $U$
\(\Rightarrow \widehat{H'UO}=90^0(4)\)
Từ \((3);(4)\Rightarrow H'UOI\) là tứ giác nội tiếp
\(\Rightarrow AH'.AI=AU.AO(5)\)
$AN$ là tiếp tuyến $(O)$ \(\Rightarrow AN\perp NO\) hay tam giác $ANO$ vuông tại $N$
Xét tam giác $ANO$ vuông tại $N$, có đường cao $NU$, sử dụng công thức hệ thức lượng trong tam giác vuông: \(AU.AO=AN^2(6)\)
Xét tam giác $AND$ và $ACN$ có:
\(\widehat{A}\) chung; \(\widehat{AND}=\widehat{ACN}\) (tính chất góc tạo bởi tiếp tuyến và dây cung)
\(\Rightarrow \triangle AND\sim \triangle ACN\Rightarrow \frac{AN}{AC}=\frac{AD}{AN}\Rightarrow AN^2=AC.AD(7)\)
Tương tự $ADHE$, ta cũng có $CIHD$ là tứ giác nội tiếp
\(\Rightarrow AD.AC=AH.AI(8)\)
Từ \((5);(6);(7);(8)\Rightarrow AH'.AI=AH.AI\Rightarrow H\equiv H'\)
Do đó $M,H,N$ thẳng hàng (đpcm)
J A B C O E D H K M N
a) Xét hai tam giác ABD và ACE có:
\(\widehat{A}\) chung
\(\widehat{ADB}=\widehat{AEC}=90^o\)
\(\Rightarrow\Delta ABD\sim\Delta ACE\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AD}{AE}\Rightarrow AD.AC=AE.AB\)
b) Xét tam giác ABC có BD và CE là hai đường cao nên H là trực tâm. Vậy thì AH vuông góc với BC tại K.
c) Ta thấy AMO; AKO; ANO là các tam giác vuông có chung cạnh huyền AO nên A, M, K, O, N cùng thuộc đường tròn đường kính AO.
Khi đó \(\widehat{AKN}=\widehat{AMN}\) (Hai góc nội tiếp cùng chắn cung AN)
Lại có AM = AN nên \(\widehat{AMN}=\widehat{ANM}\)
Suy ra \(\widehat{AKN}=\widehat{ANM}\)
d) Gọi J là giao điểm của MN với AO.
Xét tam giác vuông ANO, đường cao NJ, ta có:
\(AJ.AO=AN^2\) (Hệ thức lượng)
Lại có \(\Delta AHJ\sim\Delta AOK\left(g-g\right)\Rightarrow\frac{AH}{AO}=\frac{AJ}{AK}\)
\(\Rightarrow AJ.AO=AH.AK\)
\(\Rightarrow AN^2=AH.AK\)
\(\Rightarrow\Delta AHN\sim\Delta ANK\left(c-g-c\right)\Rightarrow\widehat{ANH}=\widehat{AKN}\)
Mà \(\widehat{AKN}=\widehat{ANM}\Rightarrow\widehat{ANH}=\widehat{ANM}\) hay M, N, H thẳng hàng.
Hoàng Thị Thu Huyền ơi ngộ nhận kìa. ý d đang chứng minh thẳng hàng mà bạn có 2 cái tam giác AHJ và AOK đồng dạng (g g) thì sao được ??